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ABSTRACT 

 

Considering the current and projected increase in human population, approaches to optimize crop 

productivity to meet the rising demand are paramount. Timely and accurate maize Above Ground 

Biomass (AGB) measurements allow for development of models that can precisely predict yield 

prior to harvesting, useful for food production management and sustenance. The development of 

Unmanned Aerial Vehicles (UAVs) as a new generation of robust remote sensing platforms, 

mounted with high-resolution sensors has allowed timely and accurate prediction of maize AGB 

in pursuit of sustaining food security. This study aimed to predict maize crop AGB in small-scale 

farming systems using UAV-remotely sensed data and landscape biophysical variables. The DJI 

Matrice 300 UAV mounted with a MicaSense multispectral camera was used to acquire high-

resolution images at four phenological stages that covered the vegetative (V8 &V12) and 

reproductive stages (R2 & R5). Furthermore, in-situ plant biophysical measurements and landscape 

variables were acquired and combined with UAV-remote sensing derived vegetation indices to 

model maize AGB using a Deep Neural Network (DNN) model. Results showed that the V12 

phenological stage yielded a better overall prediction accuracy (R2 = 0.74) than the V8 (R2 = 0.65), 

R2 (R2=0.71), and R5 (R2=0.67) phenological stages. The study concludes that the V12 and R2 

phenological stages are optimum for estimating maize AGB. This study contributes to a better 

understanding of maize crop health and crop monitoring efforts for improved food security. 

 

Keywords: UAV-Remote Sensing; Above-Ground Biomass; Maize; Smallholder Farming; Deep 

Neural Networks.  

 

INTRODUCTION 

 

Small-scale crop farming plays a critical role in the economies of developing countries and is 

crucial for sustaining food security. However, productivity in smallholdings is often adversely 

affected by unfavourable bioclimatic conditions, climate change, and lack of farming resources 

(Mgbenka et al., 2016). Maize (Zea mays) is ranked as one of the most extensively cultivated crops 

worldwide. In South Africa, maize is widely produced and consumed as a staple food by the 

majority population and also used for livestock fodder (Luo et al., 2019; Ngoune Tandzi & 

Mutengwa, 2019). Other uses of maize include the production of starch, ethanol, and fuels 

(Mgbenka et al., 2016). Although the demand for maize has significantly increased in South Africa, 
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challenges related to production and yield remain prevalent (Haarhoff et al., 2020; Verschuur et 

al., 2021). Hence, it is imperative to adopt prompt and robust techniques such as crop yield 

prediction to accurately counteract these challenges.  

 

Maize Above Ground Biomass (AGB) is an essential basis for crop yield formation as it indicates 

plant growth and productivity (Meiyan et al., 2022; Tang et al., 2023). A higher maize AGB 

signifies a superior crop performance in capturing and converting sunlight, nutrients, and water 

into energy for grain development and increased yield (Luo et al., 2019). A direct positive 

correlation between maize AGB and yield is well established in literature (Leroux et al., 2019; 

Tollenaar & Lee, 2002; Zhang et al., 2021). Hence, timely and accurate maize AGB measurements 

allow for development of models that can precisely predict yield prior to harvesting, useful for 

strategic evaluations, financial planning, efficient irrigation, and food production management 

(Yahui Guo et al., 2020). Furthermore, maize AGB serves as a crucial source of nutrition for 

livestock during periods of limited forage availability, such as the dry season (Palacios‐Rojas et 

al., 2020). Therefore, the assessment of maize AGB to optimise yield, particularly in small-scale 

farming systems, is essential for optimising productivity and mitigating potential losses (Cheng et 

al., 2020).   

 

Traditionally, quantifying maize AGB involves in-situ measurements of foliar weight, which is 

destructive and laborious, hence unsuitable for large spatial extents and repeated observations 

(Gerke, 2019; Han et al., 2019b). Recently, satellite remote sensing has been widely adopted to 

accurately monitor agricultural crops, with many studies showing a positive correlation between 

remotely sensed variables and AGB (Battude et al., 2016; Kayad et al., 2019; Leroux et al., 2019). 

For instance, Geng et al. (2021) estimated maize AGB using Moderate Resolution Imaging 

Spectroradiometer (MODIS) reflectance data and machine learning, achieving a coefficient of 

determination of 0.77 (R2 = 0.77). However, despite these successes, the application of satellite 

remote sensing is limited by as among others cloud cover, which significantly restricts maize crop 

monitoring requirements for small-scale farming systems (Zhang et al., 2021). Furthermore, small-

scale farming systems are characterized by small spatial extents of less than two hectares, hence 

higher spatial resolution sensors are necessary for effective capture of crops spectral information 

(Peter et al., 2020). In addition, the transition between phenological stages in maize crops occurs 

rapidly, necessitating the use of high-temporal-resolution sensors and on demand dataset to 

accurately monitor and capture the changes in AGB at each growth stage (B. Yang et al., 2022).  

 

Recently, Unmanned Aerial Vehicles (UAVs), also known as drones, have demonstrated a 

remarkable capability to bridge the gap between satellite remote sensing and ground-based 

observations (Gargiulo et al., 2023). This is attributed to their ability to provide cloud-free, near-

real-time data at ultra-high spatial resolution (Z. Li et al., 2022; Sharma et al., 2022). UAVs offer 

several benefits for agricultural crop monitoring that include the ability to hover over areas of 

interest and fly beneath cloud cover at flexible altitudes, allowing for high resolution imagery and 

precise monitoring of individual crops (Aasen et al., 2018). Additionally, their flexible flight 

mission make them ideal for capturing data during optimal periods, such as the short-window peak 

photosynthetic phase in maize crops (B. Yang et al., 2022). However, despite these advancements 

and capabilities, studies on the use of UAV technology on small holder farms, particularly in the 

global south, remain scarce. This underscores the need for studies that investigate the potential of 

UAVs, equipped with high resolution sensors, in predicting maize AGB in small-scale farming 

systems. 



3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

203 

 

 

High resolution sensors mounted onto UAV platforms cover a wide range of the electromagnetic 

bands including the visible, near-infrared, and red-edge sections that are useful in predicting maize 

AGB and deriving vegetation indices to support yield estimations (Li et al., 2016). For instance, 

vegetation indices derived from the near-infrared and red-edge wavelengths such as the Normalized 

Difference Vegetation Index (NDVI), have demonstrated the ability to detect subtle changes in 

crops properties such as canopy structure, photosynthetic activity, and crop health (Che et al., 2022; 

Vélez et al., 2023). For example, Brewer et al. (2022) obtained satisfactory results by using various 

multispectral derived vegetation indices such as NDVI and Soil Adjusted Vegetation Index (SAVI) 

for estimating leaf chlorophyll content to determine crop health and vigour.  

 

Typically, maize crops are characterised by variable stock height, density, and greenness, while 

canopy vegetation index remains unchanged (Adewopo et al., 2020). Hence, vegetation index-

based empirical approaches alone cannot accurately estimate maize AGB. Consequently, to 

account for these variations, biophysical variables such as leaf chlorophyll content and leaf area 

index (LAI) can be combined with vegetation indices to accurately predict maize AGB (Meiyan et 

al., 2022). Leaf chlorophyll content and LAI have been identified as strong crop health indicators 

that positively correlate with maize AGB (Che et al., 2022; Liu et al., 2019; Luo et al., 2019). 

However, measuring the aforementioned biophysical variables is only ideal for small spatial 

extents (Liu et al., 2023). In addition, considering that most small-scale farmlands are often 

characterized by challenging terrain featuring steep topography, it is essential to assess the 

influence of landscape variability on maize AGB (Polzin & Hughes, 2023). Therefore, landscape 

and landscape related variables that directly and indirectly influence crop growth such as soil 

moisture, slope, aspect, and elevation can provide a precise maize AGB estimation (Fry & Guber, 

2020; Goldenberg et al., 2022; Svedin et al., 2021). Consequently, integrating drone-derived 

multispectral bands, with optimal vegetation indices, and biophysical landscape variables can 

provide better and precise estimates of maize AGB in small-scale farming systems.  

 

Numerous regression techniques have been proposed in literature for the prediction of crop 

properties (Ali et al., 2022; Khan et al., 2022; Tripathi et al., 2022). Machine learning algorithms, 

combined with spectral variables from remote sensing datasets have proven superior for data 

analysis than other statistical approaches (Altaweel et al., 2022). Deep learning algorithms, such as 

Deep Neural Networks (DNN), have particularly gained popularity over the past decades for their 

ability to learn and discover patterns from large and complex datasets and generate accurate 

predictions (X. Li et al., 2022; Muruganantham et al., 2022). DNN comprises a hierarchy of more 

than two hidden neural network layers and are subsequently called ‘deep learning’ (Odebiri et al., 

2021a, 2021b). The primary limitation of this technique is its propensity to overfitting and 

requirement of large datasets for optimal performance (Cao et al., 2022). However, features such 

as regularization and dropout in neural networks can counteract these effects (Vojnov et al., 2022). 

Numerous studies have successfully adopted DNN to predict maize agronomic variables and 

obtained results surpassing other machine learning algorithms (Khaki & Wang, 2019; Lischeid et 

al., 2022). Despite its potential, deep learning is the least used approach in agricultural monitoring 

applications, particularly at small-scale extents due to small acquirable datasets. Therefore, there 

is need for further research to explore the full potential of UAV remotely sensed data combined 

with landscape and biophysical variables for estimating and mapping maize crop AGB using DNN 

machine learning techniques.  
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Studies have employed either plant biophysical, landscape variables or remotely sensed data to 

estimate maize AGB (Liu et al., 2019; Luo et al., 2019; Meiyan et al., 2022). Generally, studies 

have seldom integrated the two, with the landscape variables for precision agriculture. Therefore, 

this study sought to evaluate the utility of UAV remotely sensed data combined with landscape and 

biophysical variables in estimating maize AGB in small-scale farming systems using DNN 

machine learning techniques. The main objective of this study was to predict maize AGB using a 

combination of UAV remotely sensed data, landscape variables, and plant biophysical variables. 

Additionally, this study sought to determine the optimum phenological stage for timely and 

efficient maize AGB prediction in subsequent seasons. Finally, the study sought to assess the 

performance of DNN algorithm to identify an optimal model for predicting maize AGB using small 

spatial extent acquired dataset.  

 

MATERIALS AND METHODS 

 

Description of the study area 

This study was conducted in Swayimane communal area (Latitude: -29.524444°, Longitude: 

30.699846°) within the UMshwathi Municipality, in the KwaZulu-Natal province, South Africa 

(Fig.1). The experimental field is approximately 1.4 hectares and exhibits distinct variations in 

slope, aspect, and elevation. Average air temperature is 17 ℃, while the minimum and maximum 

temperatures are 11.8 ℃ and 24 ℃, respectively (Ndlovu et al., 2021) . Annual rainfall ranges from 

600 mm to 1100 mm, with most rainfall received in summer. Swayimane is characterized by wet-

hot summers and dry-cold winters. Since cropping activities in the study area are rain fed, crops 

are grown during the summer season. The area has excellent bioclimatic and physical conditions, 

that include loam soils with efficient nutrient and water holding capacity as well as optimum terrain 

for efficient sunlight capture, making it suitable for crop farming. Farmers in the area mainly rely 

on traditional farming methods such as use of kraal manure as fertilizers and animal draft 

implements for ploughing and weeding. However, with recent socio-economic improvements in 

the area, some farmers are adopting artificial fertilizers and mechanized farming, particularly in 

larger fields. In addition to maize, legumes, sweet potatoes, taro and small holding sugarcane are 

grown in the study area. 
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Figure 1. Location of the study site. 

 

Maize phenotyping 

The maize field was planted with the SC 701 hybrid (Pannar Seed Company, SA) on the 24th of 

February 2023, and harvested on the 7th of July 2023. The SC 701 seed type was chosen because 

of its high yield capacity estimated at more than 13 tons per hectare according to the seed producers. 

The SC 701 hybrid is late maturing (140-148 days) and known to be heat and drought tolerant. 

However, in such cases, irrigation is recommended for maximum yield. The maize was rain-fed 

throughout the growing season, and no drought and extreme temperatures were recorded. The 

maize was planted in rows perpendicular to the slope to minimize nutrient runoff and soil erosion 

during rainfall. The distance between the crops and rows was at least 20 cm and 70 cm, 

respectively, to avoid inter-competition within the crops and stunted growth. To eradicate weeds, 

an affordable water-soluble Basagran herbicide with a mixability of 480 g/l was applied when the 

maize was 30 days old, and a nitrogen-phosphorus-potassium [N: P: K (2:3:4=30)] fertilizers 

applied when the maize was 50 days old to enhance growth.    

                                                                                                                                                         

Data acquisition  

Ground data collection  

Data for the study was collected at four phenological stages ranging from the vegetative to 

reproductive growth phases i.e. V8 (32 days old), V12 (47 days old), R2 (96 days old) and R5 (123 

days old) (Table 1). The vegetative stages were selected as they are characterized by fully 

developed leaves, which is essential for field measurements and light reflectance. The R2 is full 

canopy stage while R5 represents the end of mass gain in maize crop. Field measurements were 
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conducted at four-week intervals to capture the above-mentioned stages of the growth cycle. Using 

a handheld Trimble Global Positioning System (GPS), 200 points were sampled using a stratified 

random approach within the experimental plot. The experimental plot was divided into sub strata 

based on slope, crop health, and crop size. Thereafter, random crops within the strata were sampled, 

ensuring variability capturing and a comprehensive and representative sample of the maize 

population. The approach was adopted to capture the size variability and representative crops for 

the whole maize field. Each sample point was marked with red tape and labelled for consistent 

monthly measurements. Field measurements were conducted on clear sunny days between 10 a.m. 

and 14:00 p.m. to capture data at peak photosynthetic activity and maximum reflectance. 

 

Table 1. Maize phenological stages used in the study.  

 

Growth Stage 
Vegetative Stages 

V8 V12 

Day after sowing 32 47 

Maize Crop 

  

Growth Stage 
 Reproductive stages 

R2 R5 

Day after sowing 96 123 

Maize Crop 

  

 

At each sampling point, LAI was obtained using a LiCOR 2200C plant canopy analyser (LI-COR 

GmbH, Germany). The analyser uses 7°, 22°, 38°, 52°, and 68° zenith angles to measure light 
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interception and transmittance below and above the plant canopy and ultimately estimates the LAI 

(Buthelezi et al., 2023). Soil moisture content was measured using HH2 moisture probe (Delta-T 

soil moisture sensors, United states) at each sample point. The HH2 soil moisture probe is inserted 

in the soil close to the root systems of the crop and records soil moisture volume with a 5% accuracy 

based on standard calibration (Cheng et al., 2022). Leaf chlorophyll content was measured using a 

Konica Minolta Soil Plant Analysis Development (SPAD) 502 chlorophyll meter (Minolta 

corporation, Ltd., Osaka, Japan). The SPAD measures a unit less chlorophyll reflectance in the leaf 

using the Red and Infrared portions of the electromagnetic spectrum (Brewer et al., 2022). Finally, 

at the R6 phenological stage, marking the end of the growing season, the designated maize crops 

underwent sampling, involving cutting the aboveground foliage, followed by weighing it using a 

mass balance to determine the fresh AGB values at each sampling point. No mass correction was 

performed on the maize crops, considering their crucial role in small-scale farming systems as a 

source of both livestock fodder and human consumption. The decision to retain moisture in the 

maize aligns with its practical use for easy swallowing, addressing the specific needs of both 

animals and humans during this stage of maturity. 

 

UAV platform and remotely sensed data acquisition 

The digital multispectral images were collected over four phenological stages using a DJI Matrice 

300 series (M300) UAV platform (SZ DJI Technology Co., Ltd, China) mounted with a MicaSense 

Altum multispectral and thermal sensor (AgEagle Aerial Systems Inc, Kansas) (Fig.2a). The Altum 

sensor is equipped with six spectral bands [red (668 nm), green (560 nm), blue (475 nm), red edge 

(717 nm), near-infrared (840), and thermal band (8 to 14 nm)] (Fig.2c). The M300 is equipped with 

Internet of Things (IoT) technology, such as obstacle avoidance sensors and a locational GPS 

connected to the camera, making the drone safe to operate and capture automatically georectified 

images. The UAV flights were conducted simultaneously with field measurements. A flight path 

covering the experimental field was digitized from Google Earth Pro and imported into the drone 

controller (Fig.2b). Before and after each flight, a whiteboard calibration panel was used to 

calibrate the reflectance of the images (Fig.2d). The calibration panel was used to determine 

illumination and atmospheric conditions during the flight for accurate vegetation indices retrieval. 

The flights were conducted between 10:00 a.m. and 14:00 p.m. under open sky and suitable weather 

conditions for optimum sunlight reflectance. The drone was operated at 15 m/s speed and 100 m 

altitude with 80% forward and 70% side overlap. The images were collected at 6 cm per pixel 

spatial resolution, based on 8mm focal length and 8o x37o field of view (FOV) angle.  
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Figure 2. The UAV platform, controller with flight plan, image sensor, and calibration panel used 

for remotely sensed data acquisition in this study. 

 

Image pre-processing and retrieval of vegetation indices 

A total of 480 images were collected during each flight at each sampled growth stage. During the 

flights, the digital images were automatically georectified by the GPS payload mounted on the 

M300 UAV platform. Subsequently, the Pix4D 4.6 Fields photogrammetry software (Pix4D Inc. 

Denver, USA) was used to pre-process the images and generate an orthomosaic image and a digital 

elevation model (DEM). In addition, the index calculator of the Pix4D photogrammetry software 

was used to calculate optimal vegetation indices for estimating maize AGB (Table 2). The Pix4D 

index calculator uses mathematical equations from the Index Data Base (IDB) 

(https://www.indexdatabase.de/) to compute vegetation indices and provide a raster data showing 

their spatial distribution. The maize sample points, orthomosaic, and vegetation index raster images 

were imported into ArcGIS pro 10.7.1 software for data extraction using the ‘extract multi-values 

to points’ in the Arc Toolbox. The extracted band reflectance and vegetation indices for each 

sample point were then exported into Microsoft Excel for statistical analysis. Evidence from 

literature has proven the efficiency of vegetation indices in predicting maize AGB (Han et al., 

2019b; Li et al., 2020; Li et al., 2016; Yue et al., 2023).  

 

A. DJI Matrice 300 B. UAV Controller and Flight Path 

 

 

 

 

 

 

 

 

 

 

 

 

C. MicaSense Altum Sensor D. Calibration Panel 

  

 

https://www.indexdatabase.de/
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Table 2. Selected optimum vegetation indices for predicting maize AGB. 

 

Vegetation Index Formula Reference 

NDVI 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (Shi & Xingguo, 2011) 

CVI NIR (
𝑅𝐸𝐷

(𝐺𝑅𝐸𝐸𝑁)(𝐺𝑅𝐸𝐸𝑁)
 ) (Hunt Jr et al., 2011) 

BNDVI 
𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸
 (Wang et al., 2007) 

NDVI_Rededge 
𝑅𝑒𝑑𝑒𝑑𝑔𝑒 − 𝑅𝐸𝐷

𝑅𝑒𝑑𝑒𝑑𝑔𝑒 + 𝑅𝐸𝐷
 (Ehammer et al., 2010) 

RBNDVI 
𝑁𝐼𝑅 − (𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸)

𝑁𝐼𝑅 + (𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸)
 (Wang et al., 2007) 

ENDVI 
((𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) − (2 ∗ 𝐵𝐿𝑈𝐸))

((𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) + (2 ∗ 𝐵𝐿𝑈𝐸))
 (Ahamed et al., 2011) 

CI_Rededge 
𝑁𝐼𝑅

𝑅𝑒𝑑 − 𝑒𝑑𝑔𝑒
− 1 (Hunt Jr et al., 2011) 

GLI 
2(𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸)

2(𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸)
 (Baroni et al., 2004) 

EVI 2.5 ∗ 
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸) + 1
 (Glenn et al., 2010) 

EVI2 2.4 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 1
 (Miura et al., 2008) 

IPVI 

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝐸𝐷
2

(𝑁𝐷𝑉𝐼 + 1) (Kooistra et al., 2003) 

SAVI 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5
(1 + 0.5) (Heiskanen, 2006) 

OSAVI (1 + 0.16)
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.16
 (Wu et al., 2008) 

SR 
𝑁𝐼𝑅

𝑅𝐸𝐷
 (Malthus et al., 1993) 

CI_Green 
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 (Ahamed et al., 2011) 

GDVI 𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁 (Tucker et al., 1979) 

Where, NDVI= Normalized Difference Vegetation Index, CVI= Chlorophyll Vegetation Index, BNDVI= Blue 

Normalized Difference Vegetation Index, NDVI_Rededge =Normalized Difference Vegetation Index Red edge, 

RBNDVI= Red Blue Normalized Difference Vegetation Index, ENDVI= Enhanced Normalized difference Vegetation 

Index, CI_Rededge= Chlorophyll Index Red edge, GLI= Green Leaf Index, EVI= Enhanced Vegetation Index, IPVI= 

Infrared Percentage Vegetation Index, SAVI= Soil Adjusted Vegetation Index, OSAVI= Optimised Soil Adjusted 

Vegetation Index, SR= Simple Ratio, CI_Green= Chlorophyll Index Green, GDVI= Generalised Difference Vegetation 

Index 

 



3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

210 

 

Retrieval of landscape variables 

To complete the objective of this study, landscape variables that significantly influence maize 

growth such as slope and aspect were acquired from the System for Automated Geoscientific 

Analyses (SAGA) Geographic Information Systems (GIS) 7.8.2 software (University of Hamburg, 

Germany). The digitized experimental field boundary and maize sample points were then used to 

clip and extract the landscape variables to the extent of the study area using ArcGIS Pro. Even 

though soil moisture was measured in-field together with biophysical variables, it was categorized 

under landscape variables because it quantifies the amount of water held by the soil. In addition, 

the DEM generated by Pix4D software was used to extract elevation data to the maize sample 

points as a landscape variable. The UAV remotely sensed data was then combined with the 

extracted landscape variables and field-measured biophysical variables in an Excel file for 

statistical analysis (Table 3). The data was then split into training (70%), and testing (30%) datasets 

using randomisation, thereby ensuring non-bias splitting and ensuring representative subsets for 

model training and validation.  

 

Table 3. Input variables. 

 

Variable Data type Number of variables 

Remotely sensed  Spectral bands 

Vegetation indices 

21 

Landscape variables  Aspect 

Elevation 

Slope 

Soil moisture 

4 

Biophysical variables  Leaf chlorophyll content 

LAI 

2 

Total 8 27 

 

AGB prediction 

Deep learning architecture  

Jupyter notebook extended from Anaconda3 was used to build a fully connected DNN model 

featuring 17 inputs, three hidden, and one output layer using python programming environment for 

predicting maize AGB at four phenological stages (Fig.3). The combination of innovative 

computational tools and sophisticated DNN architecture facilitates precise AGB predictions, 

contributing to a deeper understanding of maize growth dynamics and potential applications in 

agriculture (Coulibaly et al., 2022; Fuentes et al., 2017). DNN models are powerful in capturing 

non-linear relationships by self-learning from large datasets and make precise predictions (Zhang 

et al., 2022). DNN models use multiple layers with fully connected neurons that are similar to 

human brain neurons and known to produce highly accurate results, surpassing human experts  

(Saranya et al., 2023; Z. Zeng et al., 2022). Therefore, DNN have the potential to improve 

prediction accuracy of maize AGB compared to other traditional machine learning and statistical 

methods. 

 



3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

211 

 

 
 

Figure 3. The diagrammatic illustration of the DNN model. 

 

A good selection of hyperparameters based on the dataset is essential for building an optimum 

model (Dominguez-Olmedo, 2019). Therefore, the rectified linear unit (ReLu) was used in the 

input and hidden layers, respectively, to introduce non-linearity in the model. Linearity in DNN 

imply that all hidden layers have the same power in predicting the output (Kapočiūtė-Dzikienė et 

al., 2020). Due to the complexity and non-linearity within datasets, the hidden layers must have 

different magnitude of power in predicting the output (Tsai & Fang, 2021). Therefore, it is essential 

to introduce activation functions in the neural network to distinguish the hidden layers from each 

other for better detection and learning of the non-liner relationship between the input and predictor 

variables (Dubey et al., 2022; Jiang et al., 2022; X. Wang et al., 2022). The model was run over 

500 epochs, implying that weights in the hidden layers were constantly adjusted five hundred times 

to minimize error and improve the maize AGB prediction accuracy. The input data is forwardly 

propagated to the hidden layers, where the weights and biases in the neurons predict the output by 

self-learning non-linear patterns from the input dataset. The loss functions quantify the deviation 

from the expected output and backwardly propagate the output to the hidden layers for adjustments 

in pursuit of minimising the prediction error (Dubey et al., 2022) 

 

The output layer was fed with a SoftMax activation function and “Adam’ optimizer for model 

optimization and best results. Optimizers reduce the loss by selecting optimum weights in hidden 

layers to determine an optimum model for accurate prediction (Cho et al., 2020). Adam is known 

to surpass other optimizers such as stochastic  gradient descent  due to its ability of generalization 

and convergence speed within new datasets (Gaddam et al., 2022; Salem et al., 2022; Y. Wang et 

al., 2022). A batch size of 32 and normal initialization were also implemented in the model for best 
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results. Neural network models are well known for overfitting, which is explained as when the 

training dataset yields significantly better results than the testing dataset (Frei et al., 2022). Such 

model cannot be generalized and cannot accurately predict from an unknown dataset. Therefore, 

the L2 regularization (0.001) and a dropout of 0.4 were implemented in the layers of the model to 

minimise overfitting. The dropout and regularization features in DNN minimize loss between the 

predicted output and observed input and nullify the contribution of “bad” neurons towards 

subsequent layers, hence a better prediction accuracy. 

 

Accuracy assessment  

The Root Mean Square Error (RMSE) and coefficient of determination (R2) were used to evaluate 

the metrics. The RMSE is the difference between the predicted and the observed output, while the 

R2 reflects the percentage of the AGB variance that is explained by the model. The best performing 

model is represented by a higher R2 value and a lower RMSE. The variable importance in predicting 

maize AGB was evaluated using the SHapley Additive exPlanations (SHAP) approach. The SHAP 

uses a theoretic approach that selects the top twenty variables of high magnitude impact in the 

performance of the model (Ekanayake et al., 2022). 

 

Data preparation, variables selection, and model validation 

Data preparation and variables selection 

The correlation coefficient (R) was calculated between the predictor variables using correlation 

heat maps to choose significantly low correlated values for best results (Fig.4). Thereafter, highly 

correlated variables within the dataset were identified and removed to ensure maximum prediction 

accuracy as such variables have technically the same magnitude impact in the performance of the 

model. 
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Figure 4. Pearson correlation (R) between the selected maize AGB predictor variables for all the 

phenological stages. 

 

DNN model validation  

Fig.5 shows loss curves during the validation of the DNN model using the training and test dataset 

over 500 epochs. Model validation is necessary for evaluating the performance of the DNN during 

self-learning from the dataset. The data was separated into 70% training and 30% testing dataset, 

and subsequently validated using the latter. The training and validation curves showed a uniform 

function, implying a gradual decrease in the maize AGB prediction error across all the phenological 

stages, hence the model was perfectly validated. An optimum model for predicting maize AGB 

was established and tested using the training dataset.  
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Figure 5. Loss graphs for model validation during all the phenological stages. 

 

RESULTS 

 

Descriptive statistics 

The variations in field-measured biophysical and landscape variables of maize crops are shown in 

Table 4. On average, the recorded SPAD unit-less leaf chlorophyll content was 39.26, 37.38, 31.22, 

and 41.36 during the V8, V12, R2, and R5 phenological stages, respectively. The R5 phenological 

stage recorded the highest average chlorophyll content of 41.36. Soil moisture averages were 

21.87%, 21.41%, 16.97%, and 19.1% during the V8, V12, R2, and R5 phenological stages, 

respectively. It was observed that soil moisture content decreased with growth from the V8-R5 

phenological stages. The averages for LAI were 3.64, 2.78, 3.25, and 3.16 during the V8, V12, R2, 

and R5 phenological stages, respectively, with V8 recording the highest average.  

 

Landscape variables are not subjected to rapid changes over a short time and were therefore 

assumed to be the same throughout the duration of the study. The average slope, elevation, and 

aspect were 9%, 856 m, and 2.73 degrees, respectively. The slope, elevation, and aspect ranged 

from 2% to 14%, 847m to 862m, and 2.20 degrees to 3.42 degrees, respectively. The recorded 

maize AGB was 1.19 kg/m2 on average and ranged from 0.4 kg/m2 to 1.81 kg/m2, with 2.03 kg/m2 

and 2.11 kg/m2 recorded as outliers. The outliers were due to measurement errors in the field and 

were therefore removed from the analysis for best results. 
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Table 4. Descriptive statistics of field measured biophysical and landscape variables across all 

phenological stages. 

 

 

Deep Neural Network model evaluation in maize AGB prediction 

Fig. 6 illustrates the maize AGB prediction results obtained when the most important and best 

performing variables were combined for all phenological stages. The V8 (R2=0.65, RMSE= 0.1 

kg/m2, RMSE%=8.5%) and R5 (R2=0.67, RMSE= 0.091 kg/m2, RMSE%=7.6%) phenological 

stages had a relatively lower prediction accuracy. However, the prediction error was within the 10 

% accepted range. The V12 (R2=0.74, RMSE=0.07 kg/m2, RMSE% =5.9%) and R2 (R2=0.71, 

RMSE=0.086 kg/m2, RMSE%=7.3%) phenological stages performed optimally, with relatively 

high prediction accuracy. 
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V8 Stage 

 Range (Min-Max) Mean Median Std. 

Chlorophyll 31.36-49.61 39.26 38.99 2.59 
LAI 13.99-27.01 21.87 22.16 2.21 
Soil Moisture 

(%) 

2.48-4.64 3.64 3.64 0.25 

  V12 Stage 

 Range (Min-Max) Mean Median Std. 

Chlorophyll 29.70- 44.76 37.38 37.60 2.62 
LAI 15.67- 30.41 21.41 21.06 1.57 
Soil Moisture 

(%) 

1.62- 4.58 2.78 2.74 0.23 

  R2 Stage 

 Range (Min-Max) Mean Median Std. 

Chlorophyll 21.36- 47.49 31.22 31.55 4.17 
LAI 13.52- 23.67 16.97 16.64 1.36 
Soil Moisture 

(%) 

1.92- 7.75 3.25 3.38 0.49 

  R5 Stage 

 Range (Min-Max) Mean Median Std. 

Chlorophyll 21.6-59.4 41.36 41.7 6.27 
LAI 10.6-31.3 19.68 19.4 4.13 
Soil Moisture 

(%) 

1.41-6.8  3.16 3.03 4.85 
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 Across all stages   

 Range (Min-Max) Mean Median Std. 

Slope (%) 2-14  9 10 4 
Elevation (m) 847-862 856 857.6 4.02 
Aspect (degrees) 2.20-3.42 2.73 2.68 0.30 
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Figure 6. Predicted maize AGB using DNN model for the V8, V12, R2, and R5 phenological 

stages. 

 

Variable importance assessment  

Fig. 7 shows the most important variables in the prediction of maize AGB by the DNN model using 

the SHAP approach. The SR vegetation index was most important during the V8 and R2, while 

leaf chlorophyll content and elevation were most influential during the V12 and R5 phenological 

stages. The figure shows that all landscape variables were important in the prediction of maize 

AGB across all phenological stages. The biophysical variables (LAI and leaf chlorophyll content) 

were among the top six important variables during the V8, V12, and R5 phenological stages, while 

the Red spectral band was the least important variable in maize AGB prediction across all 

phenological stages. EVI had an extremely low importance in predicting maize AGB during the 

V12 and R5 phenological stages.  



3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

217 

 

 
 

Figure 7. SHAP generated variable importance ranking of the model’s input variables for all the 

phenological stages. 

 

Mapping the spatial distribution of predicted AGB across the phenological stages   

Fig.8 shows the spatial distribution of predicted maize AGB during all the phenological stages. 

The spatial distribution map was generated utilizing the important predictor variables (Fig.7) for 

maize AGB prediction and the equation of the line of best fit derived from scatter plots comparing 

predicted and observed AGB at each phenological stage. Typically, a raster file of the most 

important maize AGB predictor variable is generated using ArcMap, and the equation y=mx+c is 

applied, substituting x with the raster file. The generated distribution maps show an increase in 

maize AGB from the V8 to the R2 phenological stage. There was a slight decrease in the 

concentration of AGB during the R5 stage. This distribution is also shown by the prediction 
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accuracy previously presented in Fig.6, which shows relatively higher prediction accuracy during 

the V8 and the R1, and lower during the R5 and V8 phenological stages. Similarly, the distribution 

maps show the same relationship in maize AGB concentration. During all phenological stages, 

high AGB concentration was observed towards the edges and the field’s downslope. In addition, 

during all the phenological stages, low AGB was observed in a middle of the experimental field.  

 

 

 
 

Figure 8. Spatial distribution of predicted maize AGB across all the phonological stage. 

 

DISCUSSION 

 

In developing countries, small-scale farming systems typically lack crop monitoring resources and 

knowledge on techniques to optimize yield (Onyango et al., 2021). Hence, this study bridged the 

gap by implementing an affordable crop monitoring resources such as the in-situ instruments, the 

UAV platform and sensor to accurately estimate maize AGB, which can serve as a proxy to yield. 

Specifically, this study aimed to develop a model that can accurately predict maize AGB and 

determine the optimal phenological stage for maize AGB estimation.  

 

The potential of UAV-remotely sensed data in predicting maize AGB 

Unmanned Aerial Vehicle-remotely sensed data offer a promising capability to effectively estimate 

maize AGB in small spatial extents. This is attributed to the remarkable ability of the platform 

mounted with sophisticated sensors to provide high spatial resolution dataset, enabling individual 
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sensing and assessment of maize crops for accurate AGB estimation (Khun et al., 2021; Niu et al., 

2019). Unmanned Aerial Vehicle-mounted cameras such as multispectral sensors offer a broad 

range of the electromagnetic bands including the visible, NIR, Red-edge, and thermal sections, 

allowing for efficient retrieval of vegetation indices capable of estimating maize AGB (Olson & 

Anderson, 2021). This study successfully predicted AGB at various maize phenological stages 

using UAV-remotely sensed data and deep learning approach. The results indicated that the V12 

and R2 phenological stage reported relatively high accuracy in AGB predictions (R2=0.74 and 

RMSE=0.07 kg/m2) and (R2=0.71 and RMSE= 0.086 kg/m2), respectively. The V12-R2 

phenological stages are the mid-stages of maize growth cycle and portray dark green leaves, 

symbolizing a high concentration of leaf chlorophyll content (Herrmann et al., 2010). Hence, the 

best results were obtained during the V12-R2 period due to optimum reflectance of maize leaves 

and minimal soil background noise. The findings of our study concur with B. Yang et al. (2022) 

who used multi-temporal and mono-temporal UAV-remotely sensed data and noted that R3 was 

the most suitable phenological stage for maize AGB prediction. Similarly, Amanullah et al. (2009) 

investigated maize yield using traditional methods, and established that the V12-R1 phenological 

stages had relatively higher yield compared to other phenological stages. Therefore, based on our 

results, we can deduce that V12-R2 is the optimum phenological stage for maize AGB estimation.  

 

The V8 phenological stage and R5 phenological stages had lower maize AGB prediction 

accuracies, i.e., R2 = 0.65 and R2 = 0.67, respectively. This was because the maize canopy was not 

fully developed and soil background was more pronounced at V8 stage, hence, interfering with 

maize reflectance signatures (Y. Zeng et al., 2022). The spatial distribution map shows a high maize 

AGB downslope and some parts of the field where soils were thick and appeared rich in nutrients 

(Fig.8). Thin soils were also observed upslope and in some parts of the field; low maize AGB was 

observed in those areas. Considering that the study area is small, there was a significant variation 

in soil thickness, which is why the predicted concentration of maize AGB is not uniform across the 

experimental field. Thick soils have a better water retention and nutrient holding capacity for crop’s 

use, hence higher maize AGB (Mu et al., 2018).  

 

Brewer et al. (2022) noted that NIR derived vegetation indices can surpass variable background 

effects compared to conventional bands. The soil-adjusted vegetation indices were selected to 

eliminate soil background and accurately predict maize AGB. As expected, SAVI was among the 

significantly influential variables in the estimation of maize AGB during all the phenological 

stages, including the V8 where vegetation cover was minimal. The R5 phenological stage was 

characterized by dry-denting leaves and marked the end of mass gain. We speculate that the dry 

leaves significantly reduced the reflectance; hence remotely sensed variables were less important 

and lower maize AGB prediction accuracy was observed during this stage. While Red-edge-based 

vegetation indices were influential, they did not have a significant contribution to AGB prediction 

as compared to NIR-derived indices. The findings of this study are supported by Gao et al. (2017) 

who confirmed the efficacy of vegetation index-based biomass estimation in maize crops. 

 

Plant biophysical variables in maize AGB prediction 

The relationship between LAI, leaf chlorophyll content, and AGB is crucial in understanding the 

physiological and agronomic aspects of maize growth and productivity (Ban et al., 2019). LAI 

represents the total leaf area per unit ground area and is often indicates the canopy structure and 

the light interception capacity of maize crop (Liu et al., 2022). It is positively correlated with 

photosynthetic activity, as a higher LAI generally implies a larger surface area for light absorption, 
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hence high productivity (Li et al., 2023). Leaf chlorophyll content is a key factor influencing 

photosynthesis, as chlorophyll is responsible for capturing light energy and transform it into 

chemical energy (Y. Guo et al., 2020). Higher chlorophyll content is generally associated with 

increased photosynthetic rates, contributing to greater biomass production (Meena et al., 2021). 

Hence, optimal LAI and chlorophyll content contribute to enhanced photosynthesis, leading to 

increased biomass accumulation in maize crops. 

 

In this study, the recorded leaf chlorophyll content was higher in the early stage (V8) and the late 

reproductive stage (R5). This is supported by Brewer et al. (2022) who noted that high chlorophyll 

concentrations are associated with early vegetation and late reproduction stages when maize grows 

rapidly and kernelling, respectively. Similarly, leaf chlorophyll content in the early and late 

reproductive stages is associated with high LAI (H. Yang et al., 2022). As shown by the SHAP 

variable importance approach, leaf chlorophyll content had a relatively high impact on maize AGB 

prediction across all the phenological stages. Our results concur with Liu et al. (2019) who 

established a positive co-relationship between maize AGB and leaf chlorophyll content. In 

addition, LAI also had a relatively high impact on maize AGB prediction during the V8, V12, and 

R5 phenological stages. Contrary to our results, Tang et al. (2023) also established a strong 

relationship between LAI and maize yield after the R1 phenological stage in maize crops.  

 

The potential of landscape variables on improving maize AGB prediction 

Landscape variables significantly increased the maize AGB prediction accuracy and were all 

important during all the phenological stages (Fig.7). In addition, the landscape variables were less 

correlated to each other, hence the DNN model performed well with their inclusion. A study by 

Sun et al. (2023) successfully combined topographic variables and vegetation and texture indices 

to predict maize yield and obtained satisfactory results (R2 = 0.81, RMSE = 0.297t/ha), which 

confirms the value of landscape variables in maize AGB prediction. Similarly, Behera et al. (2023) 

used elevation, slope, and aspect to model maize AGB, and obtained satisfactory results (R2 = 0.72 

and RMSE= 69.18 mg/ha). Salinas-Melgoza et al. (2018) modelled a relationship between 

landscape variables and noted that landscape variables explained 21% of AGB in reforested areas. 

Salinas-Melgoza et al. (2018) argued that human activities such as deforestation, land degradation, 

improper irrigation methods, changing land uses, and pollution have a significant impact on 

landscape alteration, while crops productivity heavily depend on landscape variables. These human 

activities facilitate soil erosion, urban expansion, and alterations of soil productivity which 

significantly affect the slope, aspect, elevation and soil water holding capacity (Mariye et al., 2022). 

 

The performance of deep neural network model in maize AGB prediction  

The deep learning approach in maize yield prediction was evaluated using UAV-remotely sensed 

data combined with biophysical and landscape variables. Furthermore, with DNN requirements for 

large datasets, the three variables used in this model were adequate to feed enough information to 

the model for accurate maize AGB prediction. The main objective of this study was to evaluate 

deep learning approach in maize AGB prediction, particularly with minimal dataset obtained from 

small spatial extent. To obtain a reliable statistical relationship, DNN require large sample size to 

effectively learn and discover patterns between the predictor and test variables (Zhang et al., 2021). 

Therefore, we sampled 200 points to generate an effective model. Based on the overall RMSE and 

RMSE% achieved in this study, our model had minimal prediction errors (< 10%) across all the 

phenological stages. In addition, combining three different sources of datasets improved the 

prediction accuracy of maize AGB. This was because DNN require a lot of complex and nonlinear 
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datasets to perform effectively. Han et al. (2019a) successfully modelled maize AGB in 

commercial farming systems using DNN and other machine learning algorithms and achieved 

satisfactory results. However, this study argues that DNNs require significant repeat training, 

necessitating a lot of computational power to obtain an optimal model in minimal time. 

 

Implications and recommendations 

Unmanned Aerial Vehicle-mounted multispectral sensors provide high resolution dataset, allowing 

for detection of crop agronomical characteristics facilitating maize AGB estimation (Zhai et al., 

2023). However, the spectral information of crops remains coarse due to multispectral wide bands 

portraying lower spectral resolution. Therefore, hyperspectral remote sensing for precise spectral 

information retrieval and effective maize AGB prediction is highly recommended. Additionally, 

the study concluded that landscape variables have a significant impact on maize AGB prediction. 

However, the analysis did not include an assessment of the magnitude of each landscape variable's 

influence on maize AGB prediction. Hence, it is recommended that forthcoming research 

endeavours explore the specific impact of individual landscape variables in the prediction of maize 

AGB. This will contribute to the improvement of validated data availability for further yield 

predictions. The DNN model requires extensive hyperparameters adjustments to obtain an optimal 

model. Consequently, its suitability for tasks demanding rapid turnaround times is not 

recommended. The acquired DNN model was trained using maize derived datasets, and validated 

using unknown maize dataset, thereby enhancing its applicability in other locations with variability 

in landscape variables. However, the performance of the acquired model remains limited to 

adequate dataset and applicable to maize AGB prediction only. Despite the success of the DNN 

model in adequately predicting maize AGB, more studies need to extensively explore the full 

potential of this approach, considering its promising potential to make accurate predictions. Despite 

the success of the DNN model in adequately predicting maize AGB, more studies need to 

extensively explore the full potential of this approach, considering its promising potential to make 

accurate predictions. 

 

CONCLUSION 

 

The study sought to assess the utility of landscape and biophysical variables combined with UAV-

remotely sensed data in predicting maize AGB using the DNN algorithm at four phenological 

stages (V8, V12, R2, and R5). Based on the attained results, it can be concluded that:  

 

• The V12-R1 phenological stages are optimal for maize AGB prediction when vegetation 

reflectance is at peak.  

• Landscape variables improve the prediction accuracy of maize AGB and can therefore be 

used in maize AGB estimation.  

• The Near infrared spectral bands were the most influential variables in predicting maize 

AGB prediction.  

• Landscape variables, biophysical variables, and UAV-remotely sensed vegetation indices 

demonstrated significant importance in predicting maize AGB. Hence, the combination of 

these variables has demonstrated the ability to improve maize AGB prediction, underscoring 

the effectiveness achieved through their collaborative utilization in this study.  

• Finally, the DNN algorithm yielded satisfactory results, attributable to the combined 

dynamic and non-linear datasets in pursuit of a good model.  
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The results of this study have a significant contribution to precision agriculture particularly in 

underprivileged small-scale farming systems. Furthermore, the findings of this study address gaps 

in the current literature, notably by introducing smart agriculture concepts to the global south for 

improved maize production and sustenance.  
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