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ABSTRACT 

 

Due to the impact of climate variability and change, smallholder farmers are increasingly faced 

with the challenge of sustaining crop production. Taro, recognized as a future smart neglected and 

underutilized crop due to its resilience to abiotic stresses, has emerged as valuable for diversifying 

crop farming systems and sustaining local livelihoods. Nonetheless, a significant research gap 

exists in spatially explicit information on the water status of taro, contributing to the paradox of its 

ability to adapt to diverse agro-ecological conditions. Precision agriculture, including the use of 

unmanned aerial vehicles (UAVs) equipped with high-resolution multispectral and thermal 

imagery, has proven effective in farm-scale monitoring and provides near-real-time information on 

crop water status. Hence, this study sought to evaluate the utility of multispectral and thermal 

infrared UAV imagery in understanding taro’s water status. Leveraging deep learning techniques 

to evaluate the use of thermal remote sensing and three index-based segmentation techniques in 

predicting the canopy equivalent water thickness (EWT) of taro crops, this study sought to 

determine EWT as a proxy to its water status in smallholder farmlands. The study findings illustrate 

a significant difference in the prediction accuracies of taro EWT with and without the thermal band 

(P < 0.05). Additionally, results (R2 = 0.92, RMSE = 8.04 g/m2, and rRMSE = 15.31% including 

the thermal band and 0.91, 8.73 g/m2, and 16.64% excluding the thermal band) reveal the value of 

the Excess Green minus Excess Red (ExGR) technique in accurately predicting EWTcanopy. 

Furthermore, the near-infrared, red edge, and thermal sections of the electromagnetic spectrum, 

together with their derived indices, were critical in estimating taro EWT. This study serves as a 

foundation for a robust, efficient, and spatially explicit monitoring framework of neglected and 

underutilized crops such as taro. Furthermore, this study offers valuable insights into neglected and 

underutilized crop water use within smallholder farming systems, critical for optimizing crop 

productivity and mitigating the effects of climatic variability and change. 

 

INTRODUCTION 

 

The world is challenged by the pressing need to sustain food supply and ensure food security due 

to climate change and the increasing global population (Din et al., 2022; Hillary Mugiyo et al., 

2021). Recently, driven by water scarcity, there has been increasing interest in the potential use of 

neglected and underutilised crop species (NUS) in addressing food and nutrition challenges 

(Chivenge et al., 2015; Mabhaudhi et al., 2017; Hillary Mugiyo et al., 2021). NUS, characterised 
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by historical domestication with limited scientific research and predominantly confined to 

smallholder farming systems, have emerged as key drought-tolerant crops for diversifying 

communal cropping systems (Chivenge et al., 2015; Mabhaudhi et al., 2017). Taro (Colocasia 

esculenta (L)) is one of the oldest and most widely cultivated NUS crops in the world’s tropical 

and subtropical regions (Mabhaudhi et al., 2011; Mawoyo et al., 2017; Van Wyk, 2021). In South 

Africa, taro, locally known as amadumbe, is known to be heat tolerant and primarily cultivated for 

subsistence, especially within small and marginalised communities (Joshi et al., 2020; Mabhaudhi 

et al., 2014; Oyeyinka & Amonsou, 2020; Van Wyk, 2021). Taro is identified as a future smart 

food under the NUS category because of its edible tubers, which are rich in carbohydrates, protein, 

and vitamins (Kapoor et al., 2022; Li & Siddique, 2018). Despite taro and indeed other NUS’s 

value, literature shows that they have largely been ignored.  

 

Thermal infrared remote sensing has emerged as a valuable tool for crop water assessment and 

monitoring, offering a direct correlation with crop water biophysical and biochemical elements 

(Khanal et al., 2017; Messina & Modica, 2020). The recent advancements in image acquisition, 

like unmanned aerial vehicles (UAVs) mounted with light-weight multispectral sensors provide, 

spatially explicit near-real-time information on crop water status (Hussain et al., 2020). In addition 

to ultra-high spatial resolutions of UAV multispectral thermal imagery, image enhancement 

techniques and robust algorithms have been demonstrated to improve model accuracies. For 

instance, Index-Based Image Segmentation has been demonstrated to be effective in robustly 

segmenting plants in colour images, enabling the extraction of vegetation cover and removing soil 

background for enhanced crops spectral signatures (Hamuda et al., 2016). (Lu et al., 2022). The 

Excess Green (ExG) and Excess Red (ExR) indices were proposed by Woebbecke et al. (1995) and 

Meyer et al. (1999), respectively, to enhance plant segmentation accuracy by emphasizing plant 

greenness by accounting for the relative proportions of red and physiological green. Additionally, 

Meyer and Neto (2008) leveraged the strength of both ExG and ExR to develop the Excess Green 

minus Excess Red (ExGR) index to improve crop water assessment and monitoring using thermal 

remote sensing systems. 

 

In this regard, leveraging the capabilities of deep learning, this study sought to assess the 

performance of thermal remote sensing and index-based segmentation techniques in improving 

canopy EWT estimation of smallholder taro crops using UAV multispectral thermal imagery. 

Specifically, the study sought to: (1) assess the potential of the UAV thermal band in estimating 

EWT of smallholder taro, (2) compare the performance of crop canopy images extracted using 

the ExG, ExR, and ExGR color indices in improving EWT estimations of taro crop, and (3) 

evaluate the potential of UAV multispectral thermal imagery in EWT estimations of taro crop in 

smallholder farming systems.  

 

MATERIALS AND METHODS 

 

Study area description and the experimental field 

This research was conducted in the rural community of Swayimana, situated within the uMshwathi 

Municipality, northeast of Pietermaritzburg city, KwaZulu-Natal, South Africa (29°31′ 24’’ S; 

30°41′ 37’’ E) (Figure 1). 

 

The taro experimental plot was cultivated during the early rainy season, aligning with its optimal 

growing conditions. The selected plot covered 2864.56 m2 and was rainfed. The taro crop was sown 
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in mid-October 2022 and was approximately 171 days old at the time of the experiment. 

Specifically, the crop was intermediate between the late vegetative and early maturity growth 

stages. The selection of this growth stage is crucial for capturing the developmental dynamics of 

the crop during a period of heightened canopy growth, providing valuable insights for the research 

objectives.  

 

 
 

Figure 1. a) Location of experimental field in Swayimane and b) taro crops. 

 

Field Sampling and in-situ measurements 

A polygon delineating the taro field was created using Google Earth Pro and imported into ArcMap 

10.6 to facilitate the generation of 100 stratified random sampling points. This approach was 

adopted to ensure variability and accurate representation of all taro crops within the field. These 

sampling points were subsequently uploaded into a Trimble handheld Global Positioning System 

(GPS) with a sub-centimetre accuracy, enabling precise location of each sampling point within the 

taro field. In-situ measurements were obtained at each sampling point to compute respective EWT 

values.  

 

A portable LiCOR-2200C Plant Canopy Analyzer was used to obtain the leaf area index (LAI) of 

the crops. The LAI measurements were obtained using the 38° zenith angle with a 270° view cap 

and the ABBBB sequence, where A corresponds to a reference reading ‘above’ the canopy and B 

corresponds to a reading ‘below’ the canopy. Thereafter, the above ground biomass of each 

sampled crop was obtained, and the fresh weight (FW) obtained using a calibrated scale with a 0.5 

g measurement error. The sampled biomass was then placed in a labelled brown paper bag and 

dried in an oven at 60 °C, until a constant dry weight (DW) was reached (approximately 72 hrs).  

 

UAV platform and multispectral-thermal camera  

The DJI Matrice 300 (M300) platform, mounted with a MicaSense Altum camera and 

Downwelling Light Sensor 2 (DLS 2) was used to collect multispectral-thermal imagery. A total 

of 1626 raw images of the experimental field were obtained and pre-processed in Pix4D 

photogrammetry software. Ground reference points surveyed prior to fieldwork were then used to 
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improve the geometric accuracy of the acquired images in ArcGIS 10.6. Lastly, EWTcanopy in-situ 

measurements and the locational of each sampled taro point were overlaid with UAV multispectral-

thermal image. The multispectral and thermal reflectance data of taro was extracted from the UAV 

imagery and used to derive vegetation indices (VIs) for the development of the EWTcanopy 

prediction model. These VIs were selected based on their optimal performance in literature and 

relationship with crop water status (Baluja et al., 2012; Ozelkan, 2020; Zhang & Zhou, 2019). 

 

Index-based image segmentation of taro crops' spectral signatures 

To delineate the crop canopy and eliminate soil background from the multispectral thermal image, 

an index-based segmentation technique was employed. Specifically, The Excess Green (ExG), 

Excess Red (ExR), and Excess Green minus Excess Red (ExGR) color indices were computed 

using the green, red, and blue bands of the UAV multispectral thermal imagery (Hamuda et al., 

2016; Meyer et al., 1999; Meyer & Neto, 2008; Woebbecke et al., 1995). Finally, the threshold 

method was used to generate a binary image from the gray-level histograms obtained during the 

index-based segmentation process (Shu et al., 2021).  

 

Model development and statistical analysis 

In this study, we employed a deep machine learning approach to estimate EWTcanopy using UAV 

derived multispectral optical and thermal datasets. The study utilised a three-layer neural network 

model consisting of an input layer, a hidden layer, and an output layer. A rectified linear unit 

(ReLU) was applied to stimulate the EWTcanopy prediction model with the maximum epochs set to 

200 interactions, indicating that the weights in the hidden layers were iteratively adjusted 200 times 

to reduce error and enhance EWTcanopy prediction accuracy. Thereafter, the SoftMax activation 

function was used to transform the raw outputs of the neural network into a vector of probabilities, 

and the Adaptive moment estimation (Adam) optimizer was used to optimise the results of the 

output model. Furthermore, the dropout regularization technique was applied to avoid overfitting 

and improve the generalization of the model (Deepan & Sudha, 2020). The hyperparameters of the 

DNN model were tuned to a learning rate of 0.001, batch size of 32 and an input and hidden layer 

dropout of 0.4 and 0.2, respectively. 

 

RESULTS AND DISCUSSION 

 

Performance of the thermal band in predicting EWTcanopy of taro crops  

The performance of the thermal band in predicting EWTcanopy of taro crops revealed a consistent 

trend across the various index-based segmentation techniques. It was observed that the exclusion 

of the thermal band in EWTcanopy analysis resulted in lower estimation accuracies (P < 0.05), 

emphasising the importance of the thermal band in characterising taro crop water status. 

Surprisingly, our study found no significant difference in prediction accuracies when thermal data 

was considered in comparison to its exclusion in the ExGR-based model. These results underscore 

the effectiveness of the ExGR-based technique, particularly its robust performance irrespective of 

the inclusion and exclusion of the thermal channel.  

 

Additionally, it was observed that the thermal band was among the topmost predictor variable 

across all EWTcanopy models. Literature confirms the invaluable role of thermal infrared remote 

sensing in assessing and monitoring crop water status, establishing a direct correlation with crop 

water biophysical and biochemical elements (Khanal et al. 2017, Messina and Modica 2020, 

Krishna et al. 2021). The use of thermal remote sensing is based on the premise that thermal 
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characteristics of crop leaves are effected by leaf transpiration, which decreases in a state of water 

deficit, resultantly reducing leaf and canopy temperatures (Maes and Steppe 2012, Gerhards et al. 

2019). The findings of this study align with a recent study by Guan and Grote (2023), which 

achieved an R2 of 0.74 when incorporating the thermal channel, compared to an R2 of 0.63 with 

the thermal band excluded, highlighting the integration of multispectral and thermal data and its 

combined value in understanding crop water status. The findings of this study are further 

corroborated by those of García-Tejero et al. (2018) who concluded that the thermal band is feasible 

for monitoring almond water stress for irrigation scheduling, and Cheng et al. (2023) who 

highlighted the applicability of thermal imaging in assessing the crop water conditions of summer 

maize crop.  

 

Performance of index-based segmentation techniques for the estimation of taro EWTcanopy  

This study shows that the inclusion of soil background reduces the accuracy of EWTcanopy 

predictions within taro crop (R2 of 0.61, RMSE of 25.35 g/m2, and rRMSE of 43.87%). It was 

noted that the prediction accuracy of taro EWTcanopy improved significantly after the removal of 

soil background through the ExGR-based image segmentation technique, yielding an optimal R2 

of 0.92, RMSE of 8.04 g/m2 and rRMSE of 15.31. These results align with the broader consensus 

in the literature. Xu et al. (2021) and Li et al. (2022) for instance emphasized the challenge posed 

by soil background in influencing crop canopy spectra, particularly in UAV-derived imagery. 

Notably, while the ExG and ExR techniques demonstrated acceptable accuracy in quantifying taro 

EWTcanopy (R2 of 0.90, and R2 of 0.76, respectively), the ExGR method outperformed both these 

techniques. This notable enhancement can be attributed to the inherent capabilities of the ExGR 

technique in effectively mitigating soil background interference (Zhai et al. 2023). The 

comprehensive nature of the ExGR method combines the advantages of both the ExG and ExR by 

simultaneously leveraging ExG for extracting the crop canopy and ExR for eliminating background 

noise (Meyer et al. 2004, Hamuda et al. 2016, Riehle et al. 2020, Upendar et al. 2021).  

 

Overall, the removal of soil background has proven imperative for enhancing the accuracy of taro 

EWTcanopy predictions. These findings are further supported by Shu et al. (2021) that reported a 

significant increase in prediction accuracy from R2 of 0.45 and RMSE of 7.13 before to an R2 of 

0.74 and RMSE of 3.68 after performing soil background removal in estimating the SPAD 

chlorophyll content of a maize crop. These parallel findings underscore the significance of 

addressing soil background interference for accurate and reliable estimations in crop water-related 

assessments. 

 

REFERENCES 

 

Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. (2012). 

Assessment of vineyard water status variability by thermal and multispectral imagery using 

an unmanned aerial vehicle (UAV). Irrigation Science, 30, 511-522.  

Chivenge, P., Mabhaudhi, T., Modi, A. T., & Mafongoya, P. (2015). The potential role of neglected 

and underutilised crop species as future crops under water scarce conditions in Sub-Saharan 

Africa. International journal of environmental research and public health, 12(6), 5685-5711. 

https://mdpi-res.com/d_attachment/ijerph/ijerph-12-05685/article_deploy/ijerph-12-

05685.pdf?version=1432635125  



3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

234 

 

Deepan, P., & Sudha, L. (2020). Object classification of remote sensing image using deep 

convolutional neural network. In The cognitive approach in cloud computing and internet of 

things technologies for surveillance tracking systems (pp. 107-120). Elsevier.  

Din, M. S. U., Mubeen, M., Hussain, S., Ahmad, A., Hussain, N., Ali, M. A., Sabagh, A. E., 

Elsabagh, M., Shah, G. M., & Qaisrani, S. A. (2022). World nations priorities on climate 

change and food security. In Building Climate Resilience in Agriculture (pp. 365-384). 

Springer.  

Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant 

extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184-

199.  

Hilary van Wyk, R., & Oscar Amonsou, E. (2021). Physiochemical and functional properties of 

albumin and globulin from amadumbe (Colocasia esculenta) corms. Food Science and 

Technology.  

Hlophe-Ginindza, S. N., & Mpandeli, N. (2020). The role of small-scale farmers in ensuring food 

security in Africa. Food Security in Africa, 1-12.  

Hussain, S., Gao, K., Din, M., Gao, Y., Shi, Z., & Wang, S. (2020). Assessment of UAV-Onboard 

Multispectral Sensor for non-destructive site-specific rapeseed crop phenotype variable at 

different phenological stages and resolutions. Remote Sensing, 12(3), 397.  

Joshi, B. K., Shrestha, R., Gauchan, D., & Shrestha, A. (2020). Neglected, underutilized, and future 

smart crop species in Nepal. Journal of Crop Improvement, 34(3), 291-313.  

Kapari, M., Hlophe-Ginindza, S., Nhamo, L., & Mpandeli, S. (2023). Contribution of smallholder 

farmers to food security and opportunities for resilient farming systems. Frontiers in 

Sustainable Food Systems, 7, 1149854.  

Kapoor, B., Singh, S., & Kumar, P. (2022). Taro (Colocasia esculenta): Zero wastage orphan food 

crop for food and nutritional security. South African Journal of Botany, 145, 157-169.  

Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of 

thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 

139, 22-32.  

Li, X., & Siddique, K. H. (2018). Future smart food. Rediscovering hidden treasures of neglected 

and underutilized species for Zero Hunger in Asia, Bangkok.  

Lu, Y., Young, S., Wang, H., & Wijewardane, N. (2022). Robust plant segmentation of color 

images based on image contrast optimization. Computers and Electronics in Agriculture, 193, 

106711.  

Mabhaudhi, T., Chimonyo, V. G., & Modi, A. T. (2017). Status of underutilised crops in South 

Africa: Opportunities for developing research capacity. Sustainability, 9(9), 1569.  

Mabhaudhi, T., Modi, A., & Beletse, Y. (2011). Growth response of selected taro [Colocasia 

esculenta (L.) schott] landraces to water stress. II International Symposium on Underutilized 

Plant Species: Crops for the Future-Beyond Food Security 979,  

Mabhaudhi, T., Modi, A. T., & Beletse, Y. G. (2014). Parameterisation and evaluation of the FAO-

AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. 

Agricultural and Forest Meteorology, 192, 132-139.  

Mawoyo, B., Adebola, P., Gerrano, A. S., & Amonsou, E. (2017). Effect of genotypes and growth 

locations on composition and functional properties of amadumbe flours. Journal of Food 

Science and Technology, 54(11), 3577-3586.  

Messina, G., & Modica, G. (2020). Applications of UAV thermal imagery in precision agriculture: 

State of the art and future research outlook. Remote Sensing, 12(9), 1491.  



3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

235 

 

Meyer, G. E., Hindman, T. W., & Laksmi, K. (1999). Machine vision detection parameters for 

plant species identification. Precision agriculture and biological quality,  

Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop 

imaging applications. Computers and Electronics in Agriculture, 63(2), 282-293.  

Mugiyo, H., Chimonyo, V., Sibanda, M., Kunz, R., Masemola, C., Modi, A., & Mabhaudhi, T. 

(2021). Evaluation of land suitability methods with reference to neglected and underutilised 

crop species: A scoping review. Land, 10(2), 125.  

Mugiyo, H., Chimonyo, V. G., Sibanda, M., Kunz, R., Nhamo, L., Masemola, C. R., Dalin, C., 

Modi, A. T., & Mabhaudhi, T. (2021). Multi-criteria suitability analysis for neglected and 

underutilised crop species in South Africa. PLoS One, 16(1), e0244734.  

Oyeyinka, S. A., & Amonsou, E. O. (2020). Composition, pasting and thermal properties of flour 

and starch derived from amadumbe with different corm sizes. Journal of Food Science and 

Technology, 57(10), 3688-3695.  

Ozelkan, E. (2020). Water body detection analysis using NDWI indices derived from landsat-8 

OLI. Polish Journal of Environmental Studies, 29(2), 1759-1769.  

Shu, M., Zuo, J., Shen, M., Yin, P., Wang, M., Yang, X., Tang, J., Li, B., & Ma, Y. (2021). 

Improving the estimation accuracy of SPAD values for maize leaves by removing UAV 

hyperspectral image backgrounds. International Journal of Remote Sensing, 42(15), 5862-

5881.  

Van Wyk, H. R. A., O E. (2021). Physiochemical and functional properties of albumin and globulin 

from amadumbe (Colocasia esculenta) corms. Food Science and Technology.  

Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for 

weed identification under various soil, residue, and lighting conditions. Transactions of the 

ASAE, 38(1), 259-269.  

Zhang, F., & Zhou, G. (2019). Estimation of vegetation water content using hyperspectral 

vegetation indices: A comparison of crop water indicators in response to water stress 

treatments for summer maize. BMC ecology, 19(1), 1-12.  

Zulu, N. N. (2022). Water Scarcity and Household Food Security: A Case of Ulundi Local 

Municipality in KwaZulu-Natal, South Africa. In Handbook of Research on Resource 

Management and the Struggle for Water Sustainability in Africa (pp. 127-148). IGI Global. 

  




