
3rd African Conference on Precision Agriculture | 3-5 December | 2024 

 

154 

 

OPTIMIZING DURUM WHEAT NITROGEN NUTRITION INDEX (NNI) PREDICTION 

THROUGH SENTINEL-2 VEGETATION INDICES INTEGRATIONS 

#11335 

 
1N.H Boughattas, 1,2M. Kadri, 2M. Zekri, 3S. Ayadi, 4S. Arraouadi, 5H. Hajlaoui, 3Y. Trifa, 2I. 

Hbiri 

1 University of Sousse, Higher Institute of agronomy of chott-Meriem (ISA-CM), Sousse, 

Tunisia; 2 Robocare, Sfax, Tunisia; 3 National Agronomic Institute of Tunisia (INAT), Tunis, 

Tunisia; 4 Regional Center of Agriculture Research of Sidi Bouzid (CRRA), Sidi Bouzid, 

Tunisia; 5 Faculty of Sciences and Technology of Sidi Bouzid, Tunisia.  

e-mail: nourelhoudaboughattas@yahoo.fr; 00216 2921361  

 

ABSTRACT 

 

Nitrogen is crucial for durum wheat growth and productivity, but excess or insufficient levels can 

harm both the environment and farmers' finances. Remote sensing offers rapid, cost-effective, and 

nondestructive ways to assess crop nutrition, with vegetation indices (VIs) indicating plant health. 

This study aims to enhance the accuracy of durum wheat nitrogen status prediction by investigating 

modified formulations of Nitrogen Nutrition Index (NNI) coupled with various VIs, such as NDVI 

Sentinel-2, NDVI by GreenSeeker, GNDVI, NDRE, NRI, RESAVI, REDVI, and MCARI. Two 

experimental plots of durum wheat were selected, one in the Medjez El Bab region in the Beja 

governorate (Z30) and the other in the Sadaguia region in the Sidi Bouzid governorate (Z60). A 

nitrogen dilution curve (Nc) was established for each plot at a specific growth stage to determine 

the NNI index. Statistical analysis was performed using RStudio software to obtain a predictive 

model for NNI and the VIs extracted by CropCare application established by Robocare. The 

performance of this model was evaluated using the coefficient of determination, R2. The correlation 

analysis allowed us to identify a significant correlation between NNI and VIs. The GNDVI index 

proved to be the best indicator for estimating NNI (R2=0.972), while the NDVI was excluded 

(R2=0.221). In summary, this study underscores the effectiveness of integrating modified NNI 

formulations with diverse VIs from remote sensing, offering improved precision in fertilizer 

management for precision agriculture. 

 

INTRODUCTION 

 

Nitrogen is a fundamental nutrient for plant growth, playing a pivotal role in photosynthesis, 

protein synthesis, and overall crop productivity (Nino et al., 2024). In the case of durum wheat 

(Triticum durum), a staple in many agricultural systems, nitrogen management is critical for 

achieving optimal yields and grain quality. However, the delicate balance between sufficient and 

excessive nitrogen application poses a challenge (P. Chen, 2015)  (C. Chen et al., 2023). Over-

application can lead to environmental issues such as nitrate leaching and greenhouse gas emissions, 

while under-application can result in reduced yields and economic losses for farmers (Denora et 

al., 2023). Traditionally, nitrogen management has relied on soil tests and fixed fertilizer 

application rates, which often fail to account for spatial and temporal variability in crop nitrogen 

needs (Diacono et al., 2012). This has driven the development of more precise, dynamic 

approaches, among which remote sensing has emerged as a powerful tool (Piikki et al., 2022). 

Remote sensing technologies offer the ability to monitor crop nutrition over large areas with high 
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spatial and temporal resolution (Yu et al., 2023). By analyzing specific spectral bands, VIs can be 

derived to assess plant stress levels, and nutrient status (Xue & Su, 2017) (Fabbri et al., 2020). The 

Nitrogen Nutrition Index (NNI) is a widely used indicator for assessing the nitrogen status of crops, 

providing insights into whether a crop is experiencing nitrogen deficiency or sufficiency (Gée et 

al., 2023). However, the accuracy of NNI predictions can vary depending on the methods and 

indices used. Recent advancements in remote sensing, particularly with the availability of high-

resolution satellite data like Sentinel-2, have opened new avenues for enhancing NNI prediction 

accuracy (Zha et al., 2020) (Gée et al., 2023) (Yu et al., 2023) (Nino et al., 2024). This study 

explores the integration of various VIs, including those derived from Sentinel-2, to optimize the 

prediction of NNI in durum wheat. By analyzing the performance of different VIs and their 

relationship with NNI, this research aims to refine nitrogen management practices, ultimately 

contributing to more sustainable and efficient agriculture. 

 

MATERIALS AND METHODS 

Site descriptions 

During the 2023-2024 durum wheat growing season, this study was conducted at two experimental 

sites in Tunisia (Fig.1a), chosen to represent different agro-climatic zones and key phenological 

stages Z30 and Z60, per the Zadoks scale (Zadoks et al., 1974). Both sites followed actual field 

practices, reflecting the methods and techniques used by farmers in their daily agricultural 

activities. The first site, a 47 ha field located in Medjez El Bab, Beja Governorate (Fig.1b), typically 

receives 550-600 mm of annual rainfall. However, during the 2023 hydrological year, the region 

faced significant challenges due to adverse climatic conditions. From September 2022 to June 

2023, the area experienced severe drought, with only 80 mm of rainfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Location of study plots in Tunisia. (b) Delineation of the study plot in Medjez el Bab. 

(c) Delineation of the study plot in Sadaguia, Sidi Bouzid. 

 

The second site is in the Sadaguia region, Sidi Bouzid Governorate (Fig.3c), with an area of 0.278 

ha. This site, cultivating Maali durum wheat, is situated in a semi-arid climate characterized by 

lower annual rainfall, averaging between 200 and 300 mm. The site features sandy loam soils, 

which pose specific challenges for water retention and nutrient management. 

(a) 
(c) 

(b) 
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Experimentation 

Sample collection points were chosen using the CropCare application, based on NDVI VI maps. 

In the field, one-square-meter plots were sampled to determine fresh weight. Chlorophyll content 

was measured with a SPAD 502Plus (SPAD), and NDVI values were recorded using a 

GreenSeeker (NDVI Green). In the laboratory, samples were dried at 60°C for 48 hours, then 

ground and analyzed for total nitrogen (%N measured) using the Kjeldahl method. Critical nitrogen 

levels (%Nc) were derived from dry matter values, and the NNI was calculated as the ratio of actual 

nitrogen absorption to critical nitrogen absorption. 

 

Data collection and analysis  

Sentinel-2 spectral bands were used to derive those traditional VIs commonly used in the literature 

(Tab.1) (Hatfield et al., 2019). These indices were computed over plant sample locations and at 

two phenological stages Z30 and Z60 using the CropCare application established by Robocare 

(Robocare, 2024). Measured variables (SPAD, NDVI Green, %N measured, %Nc, NNI) and VIs 

(Table 1)) were analyzed using descriptive statistics, correlation analysis, and multiple linear 

regression to determine NNI based on other parameters, all performed with R 4.4.1 statistical 

software. 

 

Table 1. Vegetation Index extracted from Sentinel-2 images. 

 
VIs Definition Formula Application References 

NDVI 

Normalized 

Difference 

Vegetation Index 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑) (𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄  
Chlorophyll 

content 

(Rouse et al., 

1974) 

NRI 
Nitrogen 

Reflectance Index 

(𝐺𝑟𝑒𝑒𝑛 − 𝑟𝑒𝑑) (𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)⁄  

 
N content 

(Diker & 

Bausch, 

2003) 

NDRE 

Normalized 

Difference Red 

Edge 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒) (𝑁𝐼𝑅 +  𝑅𝑒𝑑𝑒𝑑𝑔𝑒)⁄  N content 
(Barnes et al., 

2000) 

RESAVI 

Red Edge Soil 

Adjusted 

Vegetation Index 

1,5 𝑥((𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒) 𝑁𝐼𝑅 +  𝑅𝑒𝑑𝑒𝑑𝑔𝑒 − 0.5))⁄  

 
NNI 

(Cao et al., 

2013) 

REDVI 

Red Edge 

Difference 

Vegetation Index 

(2𝑥𝑁𝑅𝐼 + 1)2 − 8𝑥(𝑁𝑅𝐼 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒) 

 
NNI  

GNDVI 

Green Normalized 

Difference 

Vegetation Index 

(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) (𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛⁄  

 
NNI 

(Gitelson et 

al., 1996) 

MCARI 

Modified 

Chlorophyll 

Absorption Ratio 

Index 

(𝑅𝑒𝑑𝑒𝑑𝑔𝑒 − 𝑅𝑒𝑑) (𝑅𝑒𝑑𝑒𝑑𝑔𝑒 + 𝑅𝑒𝑑)⁄  NNI 
(Daughtry et 

al., 2000) 

 

RESULTS AND DISCUSSION 

 

Descriptive Statistical Analysis 

The descriptive statistical analysis revealed notable differences between the Z30 and Z60 growth 

stages, particularly in key VIs and measured variables. The t-test results indicated significant 

variations in NDVI, SAVI, and NDVI Green, with higher values generally observed at the Z60 
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stage, reflecting more advanced plant development and increased biomass. Additionally, SPAD 

values, which measure chlorophyll content, showed a marked increase at Z60, aligning with the 

period of peak nitrogen demand. The %N measured and %Nc also differed significantly between 

stages, with higher nitrogen content observed at Z60. The NNI index was significantly higher at 

Z60, indicating better nitrogen status. These findings align with recent studies showing that these 

indicators increase with plant development and peak nitrogen demand, supporting their use for 

optimizing nitrogen management in durum wheat (Yu et al., 2023) (Al-Shammari et al., 2024) 

(Nino et al., 2024). 

 

Correlation Analysis 

The correlation analysis between various VIs and measured variables at the Z30 and Z60 stages for 

the Medjez El Bab and Sidi Bouzid plots revealed several key relationships. At Z30, strong positive 

correlations were observed between NDVI and GNDVI, NDVI and NDRE, and NDVI and 

RESAVI, indicating a close relationship between these indices. Additionally, NDVI Green showed 

strong correlations with SPAD, %N mesuré, and %Nc, while %Nc exhibited negative correlations 

with these variables. In contrast, the Z60 stage showed different correlation patterns, with NDRE 

strongly correlating with NDVI and RESAVI, while GNDVI and NRI also showed high positive 

correlations. Notably, the correlation between NDVI and GNDVI was positive at Z30 but negative 

at Z60, indicating a shift in their relationship across stages. Overall, these results highlight the 

varying strength and direction of correlations between VIs and N related variables at different 

phenological stages, underscoring the complexity of crop-nutrient interactions over time (Nino et 

al., 2024) (Yu et al., 2023). The shift in correlation patterns between NDVI and GNDVI across 

growth stages reflects similar trends reported in studies of crop development and nutrient uptake 

(Zha et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Correlation Matrix Between Different Variables, (a) of the Medjez El Bab Site (Z30), 

(b) of the Sidi Bouzid Site (Z30). 

 

Relationship between NNI and VIs, Multiple Linear Regression Analysis 

The multiple linear regression analysis focused on predicting the NNI Index using various VIs 

derived from the CropCare application. The model (Eq.1) achieved a high R² value of 0.975, 

explaining 97.5% of the variation in NNI. This indicates a strong predictive capability, with most 

(a) (b) 
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VIs contributing significantly to the model. The residuals were randomly distributed around zero, 

suggesting that the model accurately captured the relationships between the VIs and NNI. 

 

 Eq.1 

 

 

 

 

CONCLUSION  

 

This study demonstrates the effectiveness of VIs and regression models in optimizing nitrogen 

management for durum wheat. Statistical analysis revealed significant differences in VIs between 

stages Z30 and Z60, along with strong correlations among the indices. The linear regression model 

accounted for 97.5% of the variability in the NNI at stage Z30. Future research should focus on 

incorporating additional data sources to improve model accuracy. Additionally, conducting field 

validation trials to evaluate practical applicability and developing new VIs could further enhance 

nitrogen management strategies. 
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