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ABSTRACT 

 

To understand soil properties and how they might be used sustainably, mapping of soil attributes 

is a crucial activity. The study was carried out in four local government area of Kaduna State of 

Nigeria to map out some soil properties and assess their variability within the area. From the study 

area, a total of 16 soil samples (0–20 cm) were collected from different cropping patterns. A 

portable global positioning system (GPS) was used to collect the coordinates of each sampling site. 

Then, the soil properties, that is, soil organic carbon (SOC), total nitrogen (Total N), soil organic 

matter (SOM), and soil available nutrients (P and K) were measured in the laboratory. Correlation 

analysis between laboratory and remote sensing data showed positive relationships for carbon 

(r=0.23), total nitrogen (r=0.14), and organic matter (r=0.68), but negative correlations for 

available phosphorus (r=-0.48) and potassium (r=-0.42). These variable results highlight the greater 

reliability of remote sensing for assessing total carbon and organic matter versus limitations in 

quantifying phosphorus and potassium availability. Interactive effects of climate variables on soil 

nutrients were not directly assessed but remain a critical area for further research.  
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INTRODUCTION 

 

Soil is a complex material that is extremely variable in its physical and chemical composition. The 

influence of soil and crop management practices such as fertilization, cropping systems, and land-

use change exert considerable changes to such soil compositions over time. Over the years, routine 

analysis of such chemical and physical changes remains the only way to access and maintain the 

fertility of soil. The importance of the soil analysis cannot be over-emphasised since low nutrient 

values limit plant growth and excessive rainfall may result in loss of nutrients from the soil, causing 

soil fertility degradation and water pollution (Chi, et al., 2019). Therefore, soil analysis is the basic 

frame for providing the nutrient requirements of every crop. 

 

Comparative assessment of soil nutrients under different cropping systems and changing climate 

conditions requires a combination of ground-based soil sensing and laboratory analytical methods 

along with remote sensing technologies. Ground-based sensors like portable X-ray fluorescence 

(pXRF) analyzers allow rapid in-situ quantification of major and trace nutrients in soils (Towett et. 

al. 2015). Laboratory methods using combustion analysis, titrations, and spectroscopic techniques 
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offer accurate and precise measurements of total and plant-available nutrient pools (Robertson et. 

al. 1999). Satellite and aerial remote sensing provide spatial data on vegetation characteristics and 

soil properties related to soil fertility at broader scales (Mulder et al. 2011). Together, these 

approaches can provide a comprehensive assessment of soil nutrient dynamics across landscapes. 

This study synthesizes research utilizing integrated soil laboratory, ground-based sensing, and 

remote sensing methods to evaluate the impacts of climate and agricultural land use on soil 

nutrients. The focus is on comparative studies across different cropping systems under current and 

projected future climate scenarios, concentrating on research conducted in sub-Saharan Africa. 

 

Monitoring agriculture from remote sensing is a vast subject that has been widely addressed from 

multiple viewpoints, sometimes based on specific applications (e.g. precision farming, yield 

prediction, irrigation, weed detection), on specific remote sensing platforms (e.g. satellites, 

Unmanned Aerial Vehicles - UAV, Unmanned Ground Vehicles - UGV) or sensors (e.g. active or 

passive sensing, wavelength domain, spatial sampling) or specific locations and climatic contexts 

(e.g. country or continent, wetlands or dry lands). 

 

In recent years, digital soil mapping has been identified as a low-cost and efficient method for 

predicting the spatial distribution of soil nutrients. Most digital soil mapping methods are based on 

soil-landscape models, which establish mathematical or statistical relationships between soil 

properties and related environmental variables (Zhang et. al., 2019) by predicting soil 

characteristics and fertility status with the help of remote sensing data. Remote sensing in itself is 

the process of detecting and monitoring the physical characteristics of a particular soil by 

measuring its reflected and emitted radiation at a distance. The nature and working principle of 

remote sensing give it the advantages of being an extensive, non-invasive, timeliness, and flexible 

method of soil analysis, and it has the potential to increase the availability of high-resolution remote 

sensing data by providing a new opportunity for predicting soil characteristics with acceptable 

accuracy. 

 

MATERIALS AND METHODS 

 

Study Area Description 

This study was conducted in the northern and southern Guinea savannahs of Kaduna State. The 

locations in the northern savannah were Kubau and Makarfi while the southern Guinea savannah 

was Kagarko and Lere LGAs.  

 

Nigeria’s climatic zone encompasses the tropical humid forest in the south and the savannah in the 

north. Nigeria’s climatic zone encompasses the tropical humid forest in the south and the savannah 

in the north. The derived savannah is a transition zone between the rainforest and savannah biomes 

caused by forest clearance as stated by Ofomata (1975). The study was carried out in Kaduna state 

(Longitude/Latitude 9°26' to 11°13' N and 7°47 to 8°42' E) respectively, which is in the Northwest 

of Nigeria (Fig.1). The climate belt of the area is tropical Guinea Savanna, with an annual average 

temperature of 25.2℃ and an annual average rainfall of 1,323mm (Akinbode et. al., 2008). 
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Location of area(s) of interest in Kaduna state (Kubau, Makarfi, Lere, and Kagarko Local 

Government Areas) and distribution of samples. 

 

Soil Laboratory Analysis 

The chemical properties of the soils were determined at the Soil Science Laboratory, Faculty of 

Agriculture, Ahmadu Bello University, Zaria, Nigeria.  

 

The soil samples were determined by using the following methods: The organic carbon was 

analyzed by the wet oxidation method of Walkley and Black as modified by (Nelson and Sommers, 

1982). Total nitrogen by the micro-kjeldahl distillation procedure according to (Bremmer, 1996), 

available phosphorus was determined by the Bray No. 1 acid fluoride method (Nelson and 

Sommers, 1982). 

 

Field Sampling and Spatial Analysis 

The remote sensing samples were collected in the same 4 LGAs of Kaduna state distributed evenly 

between the northern and southern parts of the state; and for each farm, a sample was collected for 

each 4 points at 0-20cm depth. This is because most satellite data for soil properties are within the 

top-soil range (Hengl et al., 2015). Therefore, restricting the ground-based sampling in this study 

to 0-20 cm aligns with the typically sensed depth ranges from satellite platforms. The remote 

sensing samples were collected same time during the soil sample collection on the field. A data 

streaming pipeline is used to query and download multispectral data from the Sentinel-2 repository 

which is then processed using a proprietary algorithm. The result from the satellite image and how 

it correlates with those from chemical analysis is the subject and primary objective of this study. 

 

Correlation Analysis 

Python programming language version 3.11.4 was used as the correlation analysis tool using 

Pearson to compare the laboratory analysis and remote sensing results (Virtanen et al., 2020). 

Scatter plots allow visualization of the relationship between two variables, while correlation 

analysis provides a quantitative measure of the strength and direction of the relationship (Graham, 

2023). Python was selected due to its extensive libraries for statistical analysis and data 

visualization along with the flexibility to handle diverse data types from both laboratory and 

satellite sources (Qiusheng et al., 2009). Utilizing the Python environment for integrated analysis 

of remote sensing imagery and laboratory soil analytics follows established best practices for 

digital soil mapping and precision agriculture applications (Padarian et al., 2019). 
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Python provides a flexible open-source platform for handling diverse datasets and performing 

correlation analysis (Hengl et al. 2022). Two datasets were employed, one from remote sensing 

and the other from the laboratory, each containing 16 instances of soil chemical properties across 

12 columns. These datasets were collected from four distinct communities in Kaduna State: 

Gubuchi, Kuli, Krosha, and Kubacha, each located in different Local Government Areas. 

 

RESULTS AND DISCUSSIONS 

 

Correlation Analysis 

Correlation between the remote sensing nitrogen and the lab nitrogen result 

The result of correlation between total nitrogen of remote sensing data and laboratory analysis is 

presented in Figure 1. From the result, there was a weak positive correlation between the 

determined parameters, and this indicates an existing relation between nitrogen levels assessed 

through the remote sensing and the laboratory analysis. The weak positive correlation (r=0.14) 

found between the laboratory and remote sensing soil nitrogen could be associated with the high 

mobility and volatilization nature of nitrogen that may encourage leaching, run-off and other 

nitrogen losses from the soil, hence very difficult to measure. Towett et al. (2015) found a weak 

correlation (r=0.19) between laboratory and portable X-ray Fluorescent sensor nitrogen 

measurements in Kenyan soils due to difficulties estimating subsurface nitrogen indirectly from 

the spectral response. The low correlation highlights challenges in using remote sensing alone to 

accurately predict soil nitrogen across agricultural landscapes. The need for further ground-based 

sensing ground-truthing of satellite data to improve nitrogen prediction aligns with Piikki et al. 

(2013), who used on-ground sensors to calibrate satellite imagery for soil clay mapping. Vågen and 

Winowiecki (2019) also emphasized multi-scale calibration of remote sensing using soil analytical 

lab data for accurate digital soil mapping. 

 

The finding that neither remote sensing nor laboratory methods fully capture soil nitrogen 

complexity agrees with Hengl et al. (2017), who concluded that integrated approaches are essential 

given the intricacies of nitrogen biogeochemistry. The variability between sites also reflects Towett 

et al. (2015), who found location-specific differences in remote sensing accuracy for soil nutrients. 

Further coordinated research and data integration will help improve soil nitrogen assessment and 

enhance remote sensing capabilities for nutrient management. 

 

Correlation between the remote sensing organic matter and the lab organic matter result 

The statistical analysis indicates a significant positive correlation between the remote sensing-

derived organic matter data and the laboratory organic matter data. The strong positive correlation 

(r=0.68) between remote sensing and laboratory soil organic matter data is consistent with findings 

from other studies. Shepherd and Walsh (2002) reported R-values from 0.76 to 0.89 between lab 

and field spectroscopy organic matter measurements across diverse African agricultural soils. 

Towett et al. (2015) found the highest correlation (r=0.86) between laboratory and portable XRF 

sensor organic carbon content compared to other nutrients in Kenyan soils. The reliability of remote 

sensing for organic matter mapping aligns with Vågen and Winowiecki (2019), who used MODIS 

satellite data to map soil organic carbon across Sub-Saharan Africa with reasonable accuracy 

compared to ground-based sensing. The robust relationship between spectral response and organic 

matter is attributed to the direct impacts of surface organic content on crop growth patterns 

detectable through remote imaging (Hengl et al. 2017). However, some researchers note challenges 
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in relating surface organic matter to total profile carbon stocks using remote sensing alone (Piikki 

et al. 2013). Integrated approaches incorporating soil sampling, terrain analysis, and digital soil 

mapping techniques may further improve organic matter quantification across landscapes (Hengl 

et al. 2017). Still, the strong positive correlation demonstrates the potential of remote sensing for 

cost-effective wide-area mapping of this important indicator of soil quality and health. 

 

 
 

Figure 1. Correlation between the Remote Sensing Nitrogen and the Lab Nitrogen result. 

 

 

 
 

Figure 2. Correlation between the remote sensing organic matter and the lab organic matter result. 

 

Correlation between the remote sensing potassium and the lab potassium result 

A negative correlation was observed between the remote sensing-derived potassium data and the 

laboratory potassium data, with a correlation value of -0.42 The negative correlation (r=-0.42) 

between remote sensing and laboratory soil potassium aligns with other studies showing the 

complexity in using spectral data to estimate plant-available potassium. Piikki and Söderström 

(2019) found poor correlation (r=0.38) between remote sensing vegetation indices and 

exchangeable potassium measured in topsoils across agricultural fields in Sweden. They attributed 

this to the dependence of spectral response on multiple soil factors like mineral composition 
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influencing potassium availability. Mulder et al. (2011) noted challenges in relating leaf potassium 

absorption to total soil potassium pools given intricacies of potassium chemistry and soil 

interactions. Vågen and Winowiecki (2019) were unable to map exchangeable potassium at 

sufficient accuracy using solely MODIS (moderate resolution imaging spectroradiometer) satellite 

data for Sub-Saharan African soils. This could indicate that the remote sensing data might not 

accurately capture the true potassium levels in the soil or that there are other factors affecting the 

results. The finding highlights the need for integrated approaches combining spectral data with soil 

chemistry analysis, geologic surveys, and crop modeling to improve potassium prediction noted by 

both Piikki and Söderström (2019) and Vågen and Winowiecki (2019). 

 

While it shows promise for assessing organic matter, it may have limitations in accurately 

estimating potassium levels. Understanding these correlations is vital for the appropriate 

interpretation of remote sensing data in agricultural and environmental applications. Further 

research and validation may be needed to better understand the factors contributing to these 

correlations and improve the accuracy of remote sensing techniques for soil property assessments. 

 

Correlation between the remote sensing carbon and the lab carbon data 

Based on figure 4 below, it shows that a weak positive correlation of 0.23 was observed between 

the remote sensing-derived carbon data and the laboratory carbon data. The weak positive 

correlation (r=0.23) between remote sensing and laboratory soil carbon aligns with other studies 

showing the limitations of using vegetation indices alone to estimate total soil organic carbon. 

Mulder et al. (2011) found poor correlations between satellite data and measured soil carbon, as 

remote sensors only detect surface carbon versus total profile stores. Piikki et al. (2013) reported 

underestimation of soil carbon by 40-60% using solely remote sensing due to difficulties assessing 

subsurface carbon. Hengl et al. (2017) concluded that integrated approaches are needed to improve 

carbon mapping, given uncertainties in relating land cover to soil carbon balances and the 

importance of environmental covariates like climate, topography and parent material. The potential 

reasons for the weak correlation noted here are supported by the literature, including mismatches 

between surface and profile carbon and the indirect nature of spectral indicators relying on biomass 

proxies (Vågen and Winowiecki 2019). Recommendations for further analysis align with emphasis 

on multi-source data integration and digital soil mapping advancements to strengthen carbon 

prediction (Towett et al. 2015). 

 

 
 

Figure 3. Correlation between the remote sensing organic matter and the lab organic matter result. 
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Lastly, the carbon correlation analysis reflects consistent findings in the literature on the benefits 

and limitations of remote sensing for soil carbon assessment, highlighting the particular importance 

of integrating spectral data with soil analytics, terrain attributes, land use data and process-based 

models to support carbon monitoring and management. 

 

 
 

Figure 4. Correlation between the remote sensing organic matter and the lab organic matter result. 

 

Correlation between the remote sensing phosphorus and the lab phosphorus data 

Figure 5 revealed a significant negative correlation of -0.48 between the remote-sensing 

phosphorus data and the laboratory phosphorus data. The moderate negative correlation (r=-0.48) 

between remote sensing and laboratory soil phosphorus aligns with other studies demonstrating 

challenges in using spectral vegetation indices to estimate plant-available phosphorus. 

 

Mulder et. al. (2011) found a poor correlation between remote sensing data and soil test phosphorus 

due to difficulties detecting complex soil phosphorus chemistry from leaf reflectance. Piikki and 

Söderström (2019) reported an underestimation of Mehlich-3 extractable phosphorus by 80% using 

solely remote sensing across agricultural fields in Sweden. 

 

Hengl et. al. (2017) concluded that machine learning approaches combining remote sensing with 

soil data, terrain attributes, geology maps, and land use improved the prediction of plant-available 

phosphorus compared to spectral data alone. The negative correlation suggests reliance on indirect 

plant phosphorus proxies from remote sensing is insufficient to capture dynamics of sorption, 

precipitation, and labile phosphorus forms in the soil (Vågen and Winowiecki 2019). Integrating 

targeted soil sampling and digital soil mapping techniques could potentially strengthen phosphorus 

assessment noted by Towett et al. (2015). 

 

The finding calls for further investigation to ascertain the fundamental reasons for the negative 

correlation. It may indicate limitations in the accuracy of remote sensing techniques for assessing 

phosphorus levels, or it could be influenced by other factors affecting the data. Understanding and 

addressing the reasons for this negative correlation are essential for improving the reliability of 

remote sensing-based assessments of phosphorus in soil. 
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Figure 5. Correlation between the remote sensing organic matter and the lab organic matter result. 

 

Heat-map representation of the correlations among all the variables 

A heat map is a powerful visual tool for representing the correlations among variables which is 

also known as the “R” value table. The heat map visualization provides a clear overview of the 

variable relationships between soil properties measured through remote sensing and laboratory 

methods, as noted in other studies. The positive correlations for nitrogen, carbon, and organic 

matter reflect the reliability of remote sensing for total concentrations of these parameters found 

by Towett et. al. (2015) and Hengl et. al. (2017) in African agricultural soils. 

 

In contrast, the negative correlations for phosphorus and potassium align with the literature on the 

challenges of using spectral vegetation indices to estimate plant-available nutrient pools given 

complex sorption dynamics (Mulder et al. 2011; Piikki and Söderström 2019). 

 

Vågen and Winowiecki (2019) effectively used similar heat map matrices to represent validation 

results between ground-based sensing and laboratory measurement of soil organic carbon and 

texture fractions. The visualization format allows clear interpretation of correlations and 

discrepancies essential for selecting appropriate remote sensing approaches for different soil 

nutrients (Towett et al. 2015). 

 

By summarizing multiple correlation analyses in one figure, the heat map enables the identification 

of strengths and limitations across soil parameters to guide integrated data collection and analysis 

strategies (Hengl et al. 2017). Conversely, a negative correlation is observed in the Phosphorus (P) 

and Potassium (K) data. A negative correlation implies that as one variable increases, the other 

tends to decrease. In essence, it means that there is a discrepancy or difference between the 

measurements obtained through remote sensing and lab analysis for Phosphorus and Potassium. 

This negative correlation could be indicative of some level of inaccuracy in the remote sensing data 

for these specific soil properties or perhaps differences in how these properties are measured using 

the two methods. 

 

In practical terms, the positive correlations for Nitrogen, Carbon, and Organic Matter suggest that 

remote sensing can be a valuable tool for assessing these soil properties, offering a time and cost-
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effective alternative to laboratory analysis. However, for Phosphorus and Potassium, the negative 

correlations highlight the need for further investigation into the reasons behind the discrepancies 

and whether adjustments are necessary in the remote sensing methodology or calibration. 

 

 
 

Figure 6. Correlations among all the variables. 

 

CONCLUSION 

 

This study demonstrated the potential of integrated laboratory and remote sensing techniques for 

the comparative assessment of soil nutrients.  

 

1. Laboratory and remote sensing techniques showed varying degrees of correlation and 

accuracy for different soil properties. Strong positive correlations were found for carbon 

and organic matter having r=0.23 and r=0.68. Weak positive correlation was seen for total 

nitrogen having r=0.14. And poor negative correlations existed for phosphorus and 

potassium having r=0.48 and r=0.42 respectively. 

2. Remote sensing provided useful climate and environmental data to characterize the 

cropping systems. But incorporation of additional climate variables could further improve 

biophysical crop-soil system characterization. 
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