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ABSTRACT 

 

Artificial neural network (ANN) models have been successfully used in infrared spectroscopy 

research for the prediction of soil properties. They often show better performance than 

conventional methods such as partial least squares regression (PLSR). In this paper we develop 

and evaluate a multivariate extension of ANN for predicting correlated soil properties: total 

carbon (C), total nitrogen (N), clay, silt, and sand contents, using visible near-infrared (vis-

NIR), mid-infrared (MIR) or combined spectra (vis-NIR + MIR). We hypothesize that 

accounting for the correlation through joint modelling of soil properties with a single model 

can eliminate “pedological chimera”: unrealistic values that may arise when properties are 

predicted independently such as when calculating ratio or soil texture values. We tested two 

types of ANN models, a univariate (ANN-UV) and a multivariate model (ANN-MV), using a 

dataset of 228 soil samples collected from Murehwa district in Zimbabwe at two soil depth 

intervals (0 – 20 and 20 - 40 cm). The models were compared with results from a univariate 

PLSR (PLSR-UV) model. We found that the multivariate ANN model was better at conserving 

the observed correlations between properties and consequently gave realistic soil C:N and 

C:Clay ratios, but that there was no improvement in prediction accuracy over using a univariate 

model (ANN or PLSR). The use of combined spectra (vis-NIR + MIR) did not make any 

significant improvements in prediction accuracy of the multivariate ANN model compared to 

using the vis-NIR or MIR only. We conclude that the multivariate ANN model is better suited 

for the prediction of multiple correlated soil properties and that it is flexible and can account 

for compositional constrains. The multivariate ANN model helps to keep realistic ratio values 

– with strong implications for assessment studies that make use of such predicted soil values. 

 

INTRODUCTION 

 

Soils and soil properties vary over space in relation to the parent material, climate, topography, 

among others, and change over time in response to natural processes and human activities 

(Jenny, 1994; Beillouin et al., 2023). Sampling and monitoring of soils is costly and time 

consuming, as it usually requires a large number of measurements and laboratory analyses 

(Webster and Lark, 2013). To adequately capture the spatial and temporal variations of soils, 
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effective and less costly methods of data collection and analysis have been developed, including 

the use of visible and near-infrared (vis-NIR) and mid-infrared (MIR) spectroscopy (Nocita et 

al., 2015). Statistical models can then be employed to establish a predictive relationship 

between the spectral characteristics and values of soil properties for which corresponding 

laboratory measurements are available (Barra et al., 2021). Partial least squares regression 

(PLSR) has become the most popular regression model in soil spectroscopy (Viscarra Rossel 

and Lark, 2009; Soriano-Disla et al., 2014). It has been shown to perform well in many 

situations (Janik et al., 1998; Viscarra Rossel et al., 2006; Cambou et al., 2016; Allo et al., 2020; 

Bachion de Santana and Daly, 2022). Usually, each soil property is modelled independently, 

ignoring the correlations that exist between properties. In cases where multiple dependent 

properties are predicted, this can result in inconsistent predictions and the occurrence of 

“pedological chimera” as defined by Lagacherie et al. (2022). As a solution, multivariate 

counterparts of PLSR have been developed, the most common being the PLS2 regression 

model, a modification of PLSR developed by Wold et al. (1983) and Martens and Naes (1987). 

However, in terms of predictive accuracy, PLS2 usually performs worse than a model fitted for 

an individual variable. Several studies, (Pedro and Ferreira, 2007; Blanco and Peguero, 2008; 

Mishra and Passos, 2022), acknowledged that the univariate model gave higher prediction 

accuracy than PLS2.  

 

Recently, data-driven models and algorithmic tools from the field of machine learning have 

become popular for predicting soil properties from spectral data (Meza Ramirez et al., 2021).  

Commonly used algorithms in soil spectroscopy are support vector machines (Demattê and da 

Silva Terra, 2014; Deiss et al., 2020), cubist (Minasny and McBratney, 2008; Clergue et al., 

2023), random forest (Viscarra Rossel and Behrens, 2010; McDowell et al., 2012; Wadoux, 

2023), and artificial neural networks (ANNs) (Daniel et al., 2003; Wijewardane et al., 2018). 

The use of ANNs has been successful for soil property prediction and showed better 

performance than conventional methods such as PLSR in several studies (Daniel et al., 2003; 

Viscarra Rossel and Behrens, 2010; Ng et al., 2019; Padarian et al., 2019). The main advantages 

of ANNs over conventional regression models are the ability to extract relevant information in 

high-dimensional datasets, the modelling of non-linear relationships between spectra and soil 

properties, and a flexibility in the definition of the algorithm and objective function (Ludwig et 

al., 2019; Margenot et al., 2020). Despite its flexibility, to date very few studies have attempted 

to understand whether a multivariate ANN model accounts for the correlations that exist 

amongst soil properties, although promising results were found in Mishra and Passos (2022), 

Ng et al. (2019), and Ramsundar et al. (2015). 

 

In this paper we develop, further expand, and test the multivariate extension of ANNs for 

predicting soil properties from their vis-NIR, MIR and combined spectra (vis-NIR + MIR). 

After model development, we investigate the ability of the multivariate model to predict 

correlated soil properties, as compared to a model that predicts each property individually. The 

methodology is tested for total carbon, total nitrogen, sand, silt, and clay contents in soils from 

Murehwa district located in the sub-humid region of Zimbabwe. We hypothesize that combined 

modelling of several soil properties can eliminate “pedological chimera” by accounting for the 

correlations between the properties. The comparison between observed and predicted soil 

properties from a univariate and a multivariate model is made using vis-NIR, MIR or combined 

vis-NIR + MIR spectra.  
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METHODOLOGY 

 

The study was done in Murehwa district (17°39'S, 31°47'E), a smallholder farming area situated 

about 80 km northeast of Harare, the capital city of Zimbabwe. Soil samples were collected in 

three villages randomly selected from Ward 28 of the district. 50 % of the households in the 

three villages were then randomly selected to give a total of 183 farming households. Soil 

samples were collected from all agricultural fields belonging to the selected households. 

Samples were also collected from common lands – lands that are available for all villagers and 

used for grazing, collecting firewood, litter, and wild fruits. Soil samples were collected 

between June and July 2021 at two depths i) 0 – 20 cm ii) 20 – 40 cm.   Sampling was carried 

out following a zig-zig transect covering each field, with a sub-sample being collected at 10 m 

distance using an auger and all the sub-samples were mixed to obtain a composite per field and 

depth.  

 

Spectra were acquired at the laboratory of the French Agricultural Research Centre for 

International Development (CIRAD) in Saint Denis, La Réunion, on all soil samples ground to 

200µm. The MIR spectra were measured using an Agilent 4300 handheld FTIR spectrometer 

(Agilent Technologies, Santa Clara, CA) over a wavenumber range between 650 – 4000 cm-1 

with a measurement interval of 4 cm-1, vis-NIR spectra were measured using a LabSpec 5000 

(Analytical Spectral Devices, Inc. Boulder, CO, USA) with an optical fibre connected to the 

internal light (adapted to small sample sizes) over a wavelength of 350 – 2500nm and spectral 

resolution of 3 nm at 700 nm and 10 nm at 1400/2100 nm. Spectral pre-processing was done to 

ensure the removal of any variations caused by light scattering and to enhance some features 

within the spectra (Wadoux et al., 2021). The MIR spectra were trimmed to remove the noise 

at the edges leaving the range between 800-4000 cm-1 whereas vis-NIR spectra were trimmed 

to 20000 – 4080 cm-1. The MIR and vis-NIR datasets were then combined using spectra 

concatenation to create a third dataset (vis-NIR + MIR) ranging between 10000 - 800 cm-1. A 

For laboratory analysis, a subset of 230 soil samples, corresponding to 17 % of the total number 

of samples, was selected. The selection was based on spectra similarity and the most 

representative spectra were chosen using the Kennard Stone algorithm as implemented in the 

Unscrambler X 10.5 Software (CAMO Software Inc., Oslo, Norway). Total carbon and total 

nitrogen were determined by the Dumas elemental dry combustion method using an Elementar 

VarioMax Cube. Soil texture analysis was done using the hydrometer method following Gee 

and Bauder (1986).  

 

Two types of ANN models were built, a univariate model which predicts one soil property at a 

time, and a multivariate model which predicts more than one property at the same time. The 

univariate model was made up of one input layer, three hidden layers and one output layer. The 

multivariate model was made up of one input layer, four hidden layers and an output layer 

predicting five outputs simultaneously. The models were trained using vis-NIR, MIR and the 

combined vis-NIR + MIR data. The two ANN models were compared to a univariate PLSR 

model to gauge their performance against a conventional model. The ANN models in this study 

were built using the keras package (Allaire and Chollet, 2023) in R with tensorflow as backend 

(Allaire and Tang, 2023) and the PLSR was built using the pls package (Liland et al., 2023) 

also in R. The measured values of the soil properties from the laboratory analyses were used to 

fit the models. The measured values were split into training and validation sets using k-fold 

cross-validation to assess prediction accuracy of the model predictions on unseen data. 

Validation statistics – i.e. mean error (ME), the root mean square error (RMSE) and the 

coefficient of determination R2 - were calculated from the pairwise comparison of measured 
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and predicted values obtained from all folds as each represents a specific aspect of prediction 

quality. 

 

RESULTS AND DISCUSSION 

 

The best prediction models were obtained using MIR spectra, followed by vis-NIR + MIR 

spectra and lastly by vis-NIR spectra. Model predictions based on MIR spectra had consistently 

higher R2 values and lower RMSE values, and this difference was significant when compared 

to predictions based on vis-NIR spectra (Table 1). This can be attributed to the presence of 

fundamental vibrations in the MIR region whereas only overtones and combinations bands are 

present in the vis-NIR regions. Other studies report similar results, particularly for soil carbon 

predictions where MIR outperforms vis-NIR (Viscarra Rossel et al., 2006; Vohland et al., 2014; 

Wijewardane et al., 2018). The use of combined vis-NIR + MIR spectra did not improve the 

predictive accuracy of soil properties in this study. There are varying results on this - a study 

conducted by Johnson et al. (2019) reported an improved accuracy with combined spectra for 

several soil properties whereas others report that because the predictions with MIR spectra 

alone are already highly accurate, combining spectra either results in slightly worse results 

(Viscarra Rossel et al., 2006; Shao and He, 2011; Ng et al., 2019) or produces results that are 

equally comparable to MIR alone (Knox et al., 2015). 

 

Table 1. Comparison of the PLSR-UV, ANN-UV and ANN-MV models for three spectral 

datasets, vis-NIR, MIR and combined vis-NIR + MIR using mean error (ME), root mean square 

error (RMSE) and coefficient of determination (R2)  

 

 
We also studied the predictions of two key ratios: (1) soil C:N ratio, which is calculated using 

total carbon and total nitrogen values and is a sensitive indicator of soil quality and for assessing 

the carbon and nitrogen nutrition balance of soils; and (2) the C:Clay ratio, calculated using soil 

carbon and clay content, which has been proposed as an indicator for soil organic carbon status 

and soil structure quality (Poeplau and Don, 2023). The range of values for the soil C:N ratio 

was all within the range between 10 – 25, comparable to the measured values, whereas the 

ANN-UV model gave more unrealistic values including some negative ones. Previous studies 

in the study area have shown that soil carbon concentrations in the most fertile soils rarely 

exceed 10 g C kg-1 (Masvaya et al., 2010; Zingore et al., 2011).  For the C:Clay ratios the 

predictions made by the ANN-MV model gave significantly better results (Figure 2). Soil clay 

content plays an important role in the stabilization of SOC since clay minerals have a high 

specific surface area and carry a charge, enabling them to bind, and thereby chemically 

stabilize, organic matter. Clay aggregates also provide micropores for the physical protection 

of soil organic carbon (Wattel-Koekkoek et al., 2001). The C:Clay ratios obtained in this study 

range between 1:10 – 1:13 and sometimes even lower, which suggests that these soils are 
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degraded (Poeplau and Don, 2023). This is accurate as these soils are granitic derived. A low 

clay plus silt fraction usually provides little physical protection of organic matter to influence 

soil physical properties (Feller and Beare, 1997; Nyamangara et al., 2014). Moreover, clay 

content is not an accurate predictor of SOC, particularly in tropical soils with high 

concentrations of aluminium and iron oxides (Khomo et al., 2017; Kirsten et al., 2021).  

 

 
Figure 1. Boxplots of a) soil C:N ratio and b) C:Clay ratio calculated with measured values and 

the two ANN models 
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