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ABSTRACT 

Ascochyta blight (AB) caused by Ascochyta rabiei (Pass.) Labr. is an important and widespread 

disease of chickpea (Cicer arietinum L.) worldwide. The disease is particularly severe under cool 

and humid weather conditions, leading to crop losses at all stages of chickpea growth.  

Screening for resistant cultivars remains the most effective, economic and ecological method 

of disease management. However, traditional phenotyping methods that relying on trained experts 

are slow, costly, labor-intensive, subjective, often involve destructive sampling. The 

development of high-throughput phenotyping methods for Ascochyta blight disease holds promise 

for precise and rapid data. In this study, 216 chickpea genotypes were screened in field trials 

to investigate the use of digital imaging to implement reliable phenotyping of Ascochyta blight 

resistance. An unmanned aerial system equipped with a 5-band multispectral camera was used 

to capture imagery of the tested genotype plots. Digital image processing was employed to 

extract the NDVI index. Our aim was to explore the correlation between the NDVI index and 

visual disease severity ratings for Ascochyta blight. Results revealed a consistent correlation 

between the NDVI index extracted from image features and disease severity with R2 of 0.936. 

Genotypes were classified into resistant (R), moderately resistant (MR) susceptible (S) and highly 

susceptible categories based on their responses. These differences in genotypes response were 

utilized to developpe a predictive model for monitoring Ascochyta blight. Our findings highlight 

that rapid and precise image-based, high-throughput phenotyping can effectively differentiate 

responses to Ascochyta blight across many chickpea genotypes. 
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INTRODUCTION 

 

Chickpea (Cicer arietinum L.) is a highly valuable crop, providing an important source of protein 

and improving soil health through nitrogen fixation. However, its production is severely affected 

by various abiotic and biotic stresses, including drought and diseases. Among these, Ascochyta 

blight (AB), caused by Ascochyta rabiei (Kovatsch.) Arx, 1962, is a major biotic threat that 

significantly limits chickpea yield [1]. AB primarily affects the plant’s foliar parts, causing lesions 

and tissue necrosis that reduce seed quality and overall crop productivity. The disease often begins 

in small patches within the field but can rapidly spread under favorable conditions of temperature 

and rainfall [2-3]. Weather plays a crucial role in AB development, particularly in cooler (15-
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25°C) and humid environments (>70%) during the growing season. Additionally, factors such as 

inoculum type, virulence, concentration, and the plant's growth stage and resistance level influence 

the severity and spread of the disease [3]. 

 

Due to the polycyclic nature of AB, control often requires multiple fungicide applications, which 

are costly and pose risks to human health, wildlife, and ecosystems [4, 5]. Additionally, the overuse 

of fungicides may lead to contamination and the development of resistant pathogens. 

Consequently, the sustainable method for managing Ascochyta blight is based on breeding to 

select resistant cultivars.  However, the traditional methods of phenotyping disease resistance, 

relying on human expertise, are often time and labor consuming, not cost-effective, and sometimes 

requires destructive sampling of plants. In this context, the use of high-throughput phenotyping 

(HTP) methods for Ascochyta blight is promising for developing precise and rapid disease 

assessment digital tool. The HTP based on using digital imaging, such as drones mounted thermal, 

multispectral (MSI), or hyperspectral (HIS) cameras, offers a non-invasive and consistent imaging 

process to monitor plant stresses and disease severity. Use of drone technologies, capturing high-

resolution spectral data showed great opportunities to detect both biotic and abiotic stresses in 

different crops [6,7]. Different Indices like NDVI (Normalized Difference Vegetation Index) and 

GNDVI (Green Normalized Difference Vegetation Index), are commonly used to assess disease 

severity among different plant stresses due plant hydric state or plant health state.  

 

Several authors [8-10] have been used digital methods for evaluating plant disease severity to 

provide greater accuracy, repeatability, and reproducibility compared to traditional techniques. 

This digital process involves image acquisition, analysis, processing, and validation through 

specialized software [8-10]. In fact, over the past three decades (1990-2020), significant 

advancements have been made in using digital tools for evaluating plants diseases severity. In the 

1990s, cameras were first used to distinguish between healthy and diseased plants, such as in 

studies on Fusarium in corn [11] and maize streak virus (MSV) in resistant corn [12]. The 2000s 

saw the development of image analysis software like Assess [13] and ImageJ [14, 15], which 

improved the precision of disease quantification. By the 2010s, advanced imaging techniques, 

including thermal, hyperspectral (HIS), and multispectral (MSI) imaging, became widely used, 

offering early disease detection and more effective management compared to traditional visible 

spectrum imaging [16,17]. These imaging technologies, often mounted on drones, detect plant 

stress or disease by capturing temperature variations and multispectral data [18-19]. MSI cameras 

calculate spectral indices such as NDVI, which have been shown to strongly correlate with disease 

severity and plant health [20,21]. For instance, NDVI exhibited a strong negative correlation with 

disease severity in pineapple (-0.83 to -0.88) [22], and in chickpea, it correlated with leaf area 

index, chlorophyll content, and biomass [23]. Additionally, the correlation between visual disease 

ratings and NDVI in chickpea increased from -0.61 to -0.66 after 58 days, with NDVI’s correlation 

with yield ranging from 0.76 to 0.92 [24]. 

 

According to the short review stated above, an early and accurate disease detection remain 

essential for implementing timely management strategies. Furthermore, the digital methods require 

more improvements as it is often difficult to discriminate between biotic and abiotic stresses that 

may cause similar symptoms, making visual diagnosis challenging [25].  In fact, the use of these 

digital indices cannot differentiate between biotic and abiotic stresses without efforts from 

agronomic experts of relying on the indices data information to the main occurring stress and 
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avoiding spatial and temporal interference between two different stresses that can be potentially 

expressed in the same digital data taken from one image process acquisition [26, 27]. 

This study explores the use of digital imaging for reliable phenotyping of Ascochyta blight 

resistance in chickpea. Specifically, our innovative digital method aims for testing the correlation 

between disease severity and NDVI and boosting this correlation trough use of different 

plants/genotypes as checks for showing a gradient of resistance to AB severity and using it as 

reference model to predict the disease severity among a large sample of plants/genotypes that can 

be potentially tested for selection with reference to AB severity using NDVI information. This 

innovative digital method aims to developing a precise, automated phenotyping process for an 

effective disease management. 

 

MATERIAL AND METHODS 

 

Evaluation of AB disease severity using classic method of visual scale 

A field trial was conducted in 2020-2021 at the Sidi El Aidi experimental station of the INRA 

Settat. A total of 216 chickpea genotypes with varied resistance to AB was tested, using a 

randomized complete block design (RCBD) augmented with nine blocks and four checks. Spores 

of A. rabiei was inoculated via foliar spraying, during vegetative stage. Disease severity was 

evaluated visually using a 0-9 scale [28]. The visual reading of AB disease severity was taken for 

comparison with digital method using drone multispectral imaging to promote as rapid evaluation 

of crops health by the plant pathologist. 

 

Evaluation of AB disease severity using digital imaging and NDVI 

The disease severity was evaluated also digitally using drone multispectral imaging. NDVI values 

were computed from multispectral data to assess plant health. The NDVI values were used to find 

potential correlation with the visual reading. 

 

Reference model for calibration and prediction of disease severity 

To test the response of the 216 chickpea genotypes to AB disease severity, four checks of chickpea 

genotypes were used as references to show a gradient of different responses from low to high 

resistance to AB disease severity. A tuning curve is generated from a gradient of response (4 

checks, 9 levels of disease severity) to serve as a reference model for testing the responses of 216 

genotypes. This model is then used to assess the potential for predicting AB disease severity among 

the tested genotypes. 

 

RESULTS 

 

Evaluation of AB disease severity using visual assessment and NDVI 

Use of decision-making tools is essential for phytopathologists to effectively manage disease 

interventions by utilizing digital NDVI information to evaluate disease severity. To develop this 

tool, we assessed the correlation between Ascochyta blight (AB) disease severity and NDVI based 

on data from 216 plots of tested genotypes and 36 plots of reference genotypes. Where C1 

represents the resistant check, C2 represents the susceptible check, and C3 and C4 represent the 

moderately resistant checks (Fig. 1)  
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Since AB is characterized by color changes, resulting from lesions on plant leaves, the use of 

digital imaging data has significantly distinguished the infected plants. The NDVI results of four 

checks clearly illustrate the varying responses of chickpea genotype plots, showing a gradual 

transition in leaf color from vibrant green (resistant check C1) to yellow, orange (moderately 

resistant C3 and C4), and ultimately red (susceptible check C2). This decrease in green coloration 

correlates with the severity of AB, highlighting the relative foliar changes in the infected plants 

(Fig. 2). 

 

 
Figure 1. NDVI values relatives to 4 checks having different reaction to AB, resistant, moderate 

resistant or susceptible (36 plots relative to four checks with nine repetitions). 

 

 
Figure 2. NDVI image illustrating 216 genotype plots with visual notation of 4 checks resistance 

to AB disease (S: susceptible, MR: Moderately Resistant and R: Resistant). 
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Reference model for calibration and prediction of disease severity 

The correlation between NDVI and visual reading using data from the four checks used as 

reference genotypes facilitated the creation of an empirical model that can be used to predict AB 

disease severity using NDVI as an indicator (Eq. 1). The model equation is mounted as follows: 

 

Predicted Severity = -0.9816 * NDVI + 9.983   (1) 

 

The results showed existence of a strong correlation (R² = 0.98) between the actual visual rating 

scores and the predicted scores.  

 

Prediction test of severity using the reference model 

The severity of AB disease among the 216 genotype is predicted using the reference model to show 

how it is possible to find fitting between the predicted severity and the actual one.  

 

Among the 216 genotypes, the correlation between measured severity and predicted severity 

showed a good fit using RMSE, MAE, and RE metrics (RMSE = 0.27, MAE = 0.15, RE = ±0.04), 

indicating its potential for practical application in assessing AB disease severity in crop fields 

based solely on NDVI data. 

 

DISCUSSION 

 

In this research, drone multispectral imaging was utilized to evaluate the severity of Ascochyta 

blight (AB) in 252 chickpea plots, comprising 216 genotypes and four check varieties. The NDVI 

(Normalized Difference Vegetation Index) was calculated to correlate with visual disease ratings, 

enabling field-scale assessment of AB severity. High-resolution orthophoto images revealed 

distinct differences between heavily infested and healthy plots, with consistent discoloration linked 

to increased plant mortality. 

 

The study found a strong correlation between NDVI and AB severity, aligning with previous 

research indicating NDVI as a robust index for disease quantification. The relationship between 

NDVI and visual ratings showed an impressive R² value of 0.98. An empirical model was 

developed through linear regression, successfully predicting disease severity, validated by RMSE, 

MAE, and RE metrics. 

 

The potential of NDVI as a decision-making tool for disease management was emphasized, 

facilitating timely interventions based on environmental conditions. Other studies highlighted the 

use of machine learning and decision support systems in disease detection and management, 

demonstrating significant accuracy in monitoring various crop diseases. 

 

However, the accuracy of disease monitoring may be influenced by factors such as plant 

senescence, canopy density, and environmental conditions. Our study established a significant 

correlation between NDVI (Normalized Difference Vegetation Index) and the disease severity of 

four control genotypes with known reactions to Ascochyta blight. This finding highlights the 

potential of NDVI as a reliable tool for detecting biotic stress in crops. The use of NDVI for 

monitoring plant health has been widely reported as an effective indicator for assessing vegetation 
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vigor and stress, particularly in response to pathogens [25]. By providing non-destructive, real-

time monitoring capabilities, NDVI can serve as an early-warning system for managing disease 

outbreaks and guiding targeted interventions in precision agriculture [25]. Our results further 

validate the growing body of research that supports NDVI as a promising tool for assessing biotic 

stress in crops, allowing for efficient and sustainable crop management. In addition, the study 

underscored the need for calibrated images to increase accurate analysis and suggested further 

research to enhance the differentiation of disease symptoms using hyperspectral and multispectral 

sensing techniques. 

 

CONCLUSION 

 

This study showed that it is possible to adequately use NDVI derived from multispectral images 

and improve its fitting to effectively detect and assess the severity of Ascochyta blight on 

chickpeas. A strong correlation between NDVI and disease ratings allowed for the creation of an 

accurate predictive model. The prediction is greatly improved as the model calibration is 

referenced to a gradient of disease severity using four genotypes as checks to show a gradual 

response of disease severity.  

 

The reference curve of the checks responses to AB disease showed that it is possible to implement 

robust predictive model for monitoring disease severity. In fact, the referencing of NDVI 

information to disease severity of known genotypes improved the model fitting. The digital 

monitoring of chickpea green cover can be greatly improved if the fitting of NDVI response to 

disease severity is calibrated with reference to use of checks gradient to assess AB disease severity. 

This innovative method based on calibration can potentially help the plant pathologists to 

overcome the problem of discriminating between NDVI responses to biotic and/or abiotic stresses 

by using specifically NDVI information to assess and control AB disease severity. The results 

highlight NDVI's potential for field-scale disease monitoring and high-throughput phenotyping, 

with future integration of deep learning offering further advancements in disease management. 
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