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ABSTRACT 
 

 Soil organic matter (SOM) is considered as the backbone of soil health and soil quality. 
Thus, its’ estimation is critical to support the development of management decision including 
precision agriculture. To overcome challenges of laborious, rather expensive, and time-
consuming laboratory measurements, recent advances in image acquisition systems provided a 
new dimension of image-based SOM prediction. However, challenges remain in using soil 
images taken directly in the field due to variable soil surface conditions including vegetation 
cover, illumination, and soil moisture. Soil moisture can significantly influence soil color and 
thus confounds the relationship between SOM and soil color. This study quantifies the effects 
of soil moisture on the relationship between SOM and color parameters derived from cell phone 
images and establishes suitable SOM prediction models under varying conditions of soil 
moisture contents (SMCs). To simulate the continuous variation of soil moisture in the field, 
air-dried ground soil samples were saturated and allowed to dry naturally. Images were 
captured with a cellular phone over time representing various SMCs (set of images). Final set 
of images were captured on oven-dried samples. Images were preprocessed using illumination 
normalization to avoid illumination inconsistencies and segmentation technique to remove 
non-soil parts of the images including black cracks, leaf residues and specular reflection before 
modelling. Five color space models including RGB, HIS, CIELa*b*, CIELc*h* and CIELu*v* 
were used to quantify soil color parameters. Univariate linear regression models were 
developed between SOM and color parameters and an optimal set of color parameters that are 
capable of resisting variation in SMC was determined. It was observed that SMC exerted a 
considerable influence on SOM prediction accuracy when its value reached >10%. The 
threshold of 10% SMC was considered as the critical SMC. Consequently, stepwise multiple 
linear regression (SMLR) models were developed for soil samples with SMC below and above 
the critical SMC. For the soil samples at below the critical SMC, the color parameter R based 
model produced satisfactory prediction accuracy for SOM with R2cv, RMSEcv, and RPDcv 
values of 0.936, 4.44% and 3.926, respectively. For the soil samples at above the critical SMC, 
the SOM predictive model including SMC as a predictor variable showed better accuracy 
(R2cv=0.819, RMSEcv=7.747%, RPDcv =2.328) than that without including SMC (R2cv=0.741, 
RMSEcv=9.382%, RPDcv =1.922). This study showed potential of cellular phone to be used as 
a proximal soil sensor fast, accurate and non-destructive estimation of SOM both in the 
laboratory and field conditions. 
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INTRODUCTION 
 

Soil organic matter (SOM), the organic matter component of soil, is considered as the 
backbone of soil health and regulates various physical, chemical, and biological processes and 
properties. However, like other properties, SOM is highly spatially variable within a field 
which contributes to the development of variable SOM pool in soil. Therefore, the information 
on spatial variability of SOM can help decide site-specific management of agricultural 
resources including application of nitrogen fertilizer and achieve the tradeoff between crop 
production increase and environment pollution reduction [1], the critical component of 
precision agriculture.  

Traditional procedures for estimating SOM are laborious, costly and require time 
intensive spatially dense soil sampling (10 m or less) and laboratory analysis [2]. This often 
restricts the detailed characterization of its spatial variability in field. Furthermore, larger field 
sizes make detailed characterization unaffordable for many growers. Recently, with the 
development of technology, various soil sensors have been used to characterize SOM. For 
example, soil spectroscopy has shown potential to characterize SOM both in-situ and in 
laboratory conditions [3-11]. Although vis-NIR-MIR spectroscopy has shown great potential 
in predicting SOM, the related complex processing techniques and expensive equipment 
restrict their widespread usage in practical agricultural production scenarios. In addition, SOM 
prediction accuracy is limited using vis-NIR-MIR spectroscopy when uncontrolled soil 
conditions, like variable soil moisture and surface roughness are confronted [12-14].  

Recently, with technological progression and the advancement of image acquisition 
systems, image-based soil characterization techniques have garnered significant attention from 
the researchers in soil science. Unlike soil diffuse reflectance spectroscopy, image acquisition 
devices like digital cameras or even cameras in cellular phone are easily accessible. In the 
existing image-based SOM or soil organic carbon (SOC) prediction studies [8, 15-17], soil 
color was used as a proxy to link SOM or SOC with images. Soils with darker color are 
generally associated with higher OM contents and are regarded fertile and suitable for plant 
growth [18]. The existence (prevalence) of strong relationship amid soil’s color and its organic 
matter was also confirmed by researchers [19, 20] who came up with a cell-phone application 
named SOCIT (only pertinent to mineral soils in Scotland) which utilizes this connection. The 
app provides an approximation of topsoil organic matter content using a photograph of the soil 
of interest and user’s positional information to access location-specific factors [21]. A recent 
study also reported the development of an algorithm to quantify soil organic matter and soil 
texture from image parameters using geostatistical and regression-based methods [22]. 
However, due to the limited scope of the study in terms of soil moisture conditions, the authors 
pointed out that their algorithm needs further testing.  

The existing image-based SOM or SOC prediction studies [8, 10, 15, 17, 22] directly 
used soil color parameters to develop prediction models without considering the contribution 
of other factors like soil moisture, surface residue, surface roughness and light [23]. These 
factors are known to influence spectral response in the visible range of the electromagnetic 
spectrum (400 to 700 nm). Among these factors, soil moisture is the most important one that 
restricts practical in-situ measurement of SOM. Usually, dry soils are lighter in color than wet 
soils [24, 25]. As soil moisture content (SMC) increases, soil micro and macro pores are 
gradually filled with water and alter the physical structure of soil. Consequently, the relative 
refractivity at the soil particle surface also changes causing the change in soil color [12]. The 
soil moisture, thus, makes the relationship between SOM and soil color complicated and 
becomes a key determinant factor for the practical use of image-based SOM prediction. SMC 
was implicitly involved in the models developed in the above-mentioned studies since the 
SMCs of soil samples were variable in these studies, but it’s influence on SOM prediction was 



1st African Conference on Precision Agriculture | 8-10 December | 2020 

 335 

not considered and hence, the given study was planned in which SMC was explicitly considered 
for SOM prediction.  

Following up on the missing links, the research questions addressed in this study were 
to (1) evaluate the ability of cell phone images to predict SOM using color parameters; (2) 
quantify the effect of soil moisture on the accuracy of SOM prediction models based on color 
parameters; and (3) determine the critical moisture content at which it begins to influence SOM 
prediction accuracy based on color parameters and establish suitable SOM prediction models 
accordingly. 

 
MATERIALS AND METHODS 

 
Twenty-five soil samples with a wide variation in SOM (3.3-62.7%) were selected for 

this study, for whom SOM was measured using loss on ignition (LOI) method (Schulte and 
Hopkins, 1996). Digital images (2322 ×4128 pixels) were captured with a cellular phone 10-
megapixel camera set to a holder 32 cm above the sample and the images were saved as Joint 
Photographic Experts Group (JPEG) standard compression. A total of six sets of images were 
collected corresponding to six different levels of SMC (“group 1”, “group 2”, “group 3”, 
“group 4”, “group 5” and “group 6” with increasing SMC). The images of oven-dried soil 
samples formed the components/constituents/parts of “group 1”, images of air-dried soil 
samples of “group 2”, three sets of images collected during the natural drying process of “group 
3”, “group 4” and “group 5” and those of saturated soil samples of “group 6”. There were 146 
images in all, with 25 images for each group except 24 images for “group 2”and “group 6”, 
and 23 images for “group 1”. Before the images were analyzed, preprocessing was carried out 
with four components: 1) region of interest (ROIs) selection, 2) illumination normalization, 3) 
image segmentation and 4) color space conversions.  

 
RESULTS AND DISCUSSION 

 
The scatter plot between SOM and color parameter R for all the groups is shown in 

Fig. 1. It can be witnessed that there exists a negative correlation between the color parameter 
R and SOM for the first three groups. However, for the latter three groups, the scatter plot 
demonstrates that an increase in SOM content occurred, without a considerable decrease in 
the R values. Similar trends were observed in the scatter plots between SOM and other color 
parameters G and B. The change in the behavior observed (the pattern of distribution of 
scatter plots) supported that the negative correlation between SOM and color parameters 
cannot be held with increasing variation in SMC, and that SMC influences color parameter-
based SOM prediction in a different manner below and above a specific level and hence, it 
was crucial to identify that level of SMC after which it exerted significant influence.  

Since the decrease in SOM prediction accuracy was not obvious for the first three 
groups, the SMC frequency distribution for soil samples belonging to these groups was 
analyzed and the results showed that 95% soil samples had a SMC of less than 10%. Similar 
patterns were also observed in other studies; for instance, Nocita et al. (2013) grouped 
together soil samples with a gravimetric SMC >=15% and developed a single SOC model 
with good prediction accuracy using a PLSR of soil diffuse reflectance in the vis-NIR region. 
Rienzi et al. (2014) demonstrated that predicting SOC over a range of 10% soil moisture 
variability did not substantially change prediction quality. Because of the behavior exhibited 
by our data as well as resemblance to similar studies, a SMC value of 10% was, therefore, 
determined to be as regarded as the critical SMC in this study (for further exploration). 
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Figure 1. Scatter plots between SOM and color parameter R under varying soil moisture. 
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