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ABSTRACT 

In the context of a rapid increase in phosphorus (P) fertilizers prices, new techniques are 

needed for geospatial predictions of soil P for improved P fertilizer management, while increasing 

farmer profitability and reducing environmental concerns. One of the biggest issues in site-specific 

phosphorus management is the substantial spatial variability in plant available P across fields. This 

leads to an expensive and laborious process for accurate mapping soil P using a traditional soil 

sampling and laboratory analysis approach. To overcome this barrier, emerging sensing and data 

interpretation technologies should be employed to accurately assess spatial heterogeneity of P 

within fields, and to help farmers optimize mineral P fertilization recommendations.  

In this study, we applied machine learning algorithms and novel data fusion concepts to 

analyze integrated high-density spatial data layers related to the potential P availability to plants. 

Machine learning algorithms were used to evaluate the relative importance of different auxiliary 

soil properties at predicting plant-available P. These variables were used for modeling P spatial 

distribution. High-density data mining techniques and various sensor data fusion algorithms and 

optimization techniques were used to predict P spatial distribution and identify site-specific 

management zones. Supervised machine learning algorithms such as Support Vector Machine was 

used, along with sensor data fusion.  

Auxiliary data to predict available P included high-density apparent soil electrical 

conductivity (ECa), gamma-ray spectrometry, high-resolution topography as well as soil test data 

from a field in Southwestern Ontario, Canada. Spatial maps were prepared using elevation data 

based on a Real-Time Kinematic (RTK) global navigation satellite systems (GNSS) receiver, 

DUALEM-21S sensing, a gamma-ray (SoilOptix) spectrometer and laboratory analysis of soil 

samples. An ATV was used to collect on-the-go measurements using this proximal soil sensing 

equipment.  

The machine learning models successfully predicted P and generated high resolution maps 

showing P status zones and recommendation maps at the local level. The results of supervised 

regressions and reclassifications modeling represent a robust decision tool for phosphorus 

precision nutrient management and variable rate technology. Regression machine learning models 

were turned into classification models. Results of this study show that radial basis kernel trick 

SVM regressor trained and validated with 10 fold repeated cross validation performed the best. In 

fact, a cost value equal to 1, sigma=0.08 and epsilon=0.1, provides an R-squared of 0.53 and 0.54, 

an RMSE of 8.79 and 8.98 for SVM K-fold cross validation and repeated cross-validation 
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respectively. Therefore, the choice of repeated cross-validation slightly improved our 

available P spatial predictions.  

Environmental sensor covariate fusion combined with spatial machine learning 

algorithms is a useful tool to help farmers save P fertilizer and preserve environmental 

resources through understanding the available P spatial variability across the study area. 

Future research should focus on combining prediction results based on different machine 

learning algorithms and integrate them with traditional regression techniques.   

Keywords: Proximal soil sensing, Geospatial predictions, spatial variability, data mining, data 

fusion, modeling, supervised machine learning algorithms, support vector machine.   

 

INTRODUCTION 

A world population expected to reach 9.1 billion by 2050 requires a rise in food 

production by 70% (FAO, 2009). However, soils are becoming degraded in many parts of 

the world, meaning that agriculture can only occur in a limited space. Thus, it is essential 

that this limited space be accompanied by an increase in soil productivity with respect to 

sustainable development and environmental protection. If soils at agricultural sites are 

deficient in P, it can lead to up to 15% yield losses (Mahdi et al., 2012). To overcome this 

issue, farmers will often add P fertilizers to adjust soil fertility and maximize yields. 

Similarly, yield can be improved in field’ zones where fertilizer application is needed and 

reduce over-fertilization was beneficial in limited yield potential zones (Simard et al., 

1998).  

When applying P fertilizer on fields, farmers will typically apply a uniform P rate. 

However, soil P spatial variability in field scale tends to be high in most places (Hong-xia 

et al., 2010). Thus, applying a uniform P rate neglects P spatial variation within soils and 

can lead to over or under application of fertilizers. This increases production input costs, 

and excess P may runoff to surrounding hydrologic ecosystems (Fang et al., 2002). One 

solution to this issue is to adopt precision agriculture, which involves dividing fields into 

zones and delivering customized management to each zone (Mulla and Miao, 2016). The 

goal of precision nutrient management is to ensure that each zone in the field receives a 

rate of fertilizer that is specific to that zone’s requirement (Mulla, 1991; 1993).  

Precision P fertilization managements is still not considered in most arable land. As 

phosphorus fertilizer prices have been consistently increasing, and concerns over an 

efficient use of a limited resource are rising, spatial predictions methods and new 

innovative P sensing models within agricultural fields are required to optimize the use of 

P fertilizer with regards to spatial variability for some improved P variable rates 

prescriptions. 

Data availability and collection represents major concerns over the past two 

decades to boost soil productivity, take rational management decisions, and reduce 

fertilizers’ leaching and pollution. Yet, the development of sensor technology is making a 

great difference by offering voluminous and diverse data to farm practitioners and 
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agricultural policy experts (Nawar et al., 2017). However, no commercial sensor exists for on-the-

go available phosphorus measurements. Only reflectance techniques appear to be near this goal 

(Sinfield et al., 2010). On the other hand, Adamchuck et al. (2011) pointed out the plausible low 

accuracy of a single sensor and the need for sensor fusion. Integration of different proximal soil 

sensors could provide farmers with robust soil properties predictions (Adamchuck et al., 2011). 

Data integration plays a key role in producing effective machine learning models by incorporating 

data from a variety of sources (Dong., 2018). Therefore, fusion of suitable sensors data in the 

process of variable rates management decisions should be tested to determine whether it will 

improve farmer’s profitability and reduce environmental impacts.  

Digital soil mapping is becoming affordable thanks to recent advances in machine learning 

during the last few decades (McBratney et al., 2003). Machine learning algorithms are increasingly 

being used in the precision agriculture community to map soil properties and generate spatial 

predictions (Brungard et al. 2015; Thorsten et al. 2018). Digital soil mapping with supervised or 

unsupervised machine learning is needed to understand spatial variability and improve models’ 

performances (Grunwald et al., 2006; Kim et al., 2012; Boruvka et al., 2008). Machine learning 

models have been used to decipher spatial patterns in a given dataset and produce useful 

predictions (Witten et al., 2011). They have been used to predict soil horizons and soil types (Jafari 

et al, 2012), soil types and topographic attributes (Silveira et al., 2013; Dobos et al., 2000), soil 

organic carbon (Nawar et al., 2020), soil cation exchange capacity by fusing PXRF and vis-NIR 

datasets (Mengxue et al., 2020). Moreover, spatial distribution of topographic attributes is 

inherently impacting landscapes and consequently soil properties. This allows soil scientists to 

characterize soils and produce pedological maps (Klingebiel et al., 1987; Moore et al., 1991).   

Int this study, we aim to infer available phosphorus spatial pattern by fusing a variety of 

high-dense sensor data and using machine learning algorithms to predict phosphorus values in the 

soil of unsampled locations. The sensors we focused on include gamma-ray, Dualem-21s and 

topographic attributes. We explored the importance of these sensor’s variables using the 

supervised Support Vector Machine algorithm. Model predictions were then used to produce 

accurate digital soil maps portraying spatial predicted available phosphorus across the study site. 

Ultimately, the main goal of this research is to test the capability of machine learning algorithms 

to assist us in predicting phosphorus status in space and guide farmers in adopting precision 

phosphorus management.  

MATERIALS AND METHODS 

Data collection  

Soil sampling and proximal soil sensing occurred in a field located at Ontario, Canada. 

Proximal soil sensors were used to map this field. The soil texture is mainly loam which allows 

suitable drainage conditions. Figure 1 illustrates the site location and boundaries, soil sampling 

locations, gamma-ray sensor and soil apparent electrical conductivity (ECa) readings. 
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Geostatistical analysis and sensor data fusion  

Empirical Bayesian kriging (EBK) was used to produce geostatistical raster layers 

with high-dense proximal soil sensor data (i.e. Dualem and Gamma) and topographic 

attributes (DEM, slope and aspect) (ESRI, ArcGIS Pro). Figure 2 illustrates examples of 

raster layers produced based on high-dense soil sensors readings.  

Raster to points function in ArcGIS (version 10.8.1; ESRI, Redlands, California, 

USA) was used to extract and match locations between soil sampling and proximal soil 

sensing datasets based upon the geostatistical raster layers. This allowed us to proceed to 

sensor data fusion and integrate all collected data in space. The fused spatial dataset was 

then considered to be a ground truth dataset which we used during the training and 

validation of our machine learning spatial prediction models 

Figure 1: Study area in Ontario, Canada: Soil sampling locations, Soil apparent electrical 

conductivity (ECa) with Dualem sensor, Gamma -ray sensor readings, Elevations (RTK 

GPS).  
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Composite band rasters were produced by overlaying all geospatial covariates issued from 

each proximal soil sensor variables. This composite bands raster stack represents the predictors of 

available P spatial distribution across the study site, using machine learning models which were 

developed in this study. Table 1 describes sensor covariate raster map information; raster 

dimensions, resolution, extent and coordinate reference system.  

 

 

 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 1: Predicted available P raster information 

Dimensions 3129, 3227, 10097283 (number of rows, number of columns, number of cells) 

Spatial resolution 0.2*0.2 (X, Y) 

Extent 566130, 566775.4, 4824739, 4825364 (Xmin, Xmax, Ymin, Ymax) 

coordinate reference system UTM NAD83 Zone 17 

RESULTS AND DISCUSSION 

Machine learning and model’s selection 

Predictor raster bricks are made of environmental sensor covariates. These raster bricks are 

used to predict available P in the same extent and at the level of each cell center with Support 

Figure 2: Empirical Bayesian kriging geostatistical raster layers of topographic attributes 

(DEM, Aspect and slope), and Gamma-ray (K_40)  
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Vector Machine algorithms we trained and validated using cross validation and repeated 

cross validation. Results of spatial predictions demonstrated that the north west part of the 

field is deficient in available P, and the rest of the field does not need P fertilizer.  

Reclassification of P spatial predictions  

The results of the reclassifications represent a useful decision tool for precision P 

nutrient management. Validated machine learning models were turned into classifications 

models. We split the raster cells values based upon predicted available P across the study 

area and the official P fertilization requirements in Canada (Reid, K., 2006) which requires 

P fertilization when it is below 30ppm (Figure 3). These classification models should be 

useful in terms of adopting P variable rates technology. In this study, farmers should be 

able to decide whether or not P fertilizer is required. Also, farmers could navigate over the 

study site using GPS/RTK equipment and determine which specific areas need to be 

fertilized, and avoid fertilizing when it is not needed.  

 

SVM regressor / K-fold cross validation 
 

 

SVM regressor / Repeated cross validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Re-classification of the predicted available P cell values based on two classes; 

“Appl”: P amendments are required and “NotAppl”: P amendments are not needed.   

SVM is known to handle both linear and no-linear dataset and separations 

boundaries (support vectors). The cost function controls errors and margins, while creating 

the optimum hyperplane to separate data observations. In this study, radial kernel trick 

SVM regressor trained and validated with repeated cross-validation performed well in 

terms of spatial predictions of available P. A cost value equal to 1, sigma=0.08 and 

epsilon=0.1, provides an R-squared of 0.53 and 0.54, an RMSE of 8.79 and 8.98 for SVM 

K-fold cross validation and repeated cross-validation respectively. Therefore, the choice of 

repeated cross-validation improved slightly our available P spatial predictions (Table 2).  
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Table 2: Synthesis of the validated models and hyperparameter tuning 

Models Train control 

strategies 

Hyperparameter 

tuning 

RMSE R-squared MAE 

 

Support 

Vector 

Machine 

K-fold cross-

validation 

Cost= 1 

Sigma = 0.08 

Epsilon= 0.1 

8.79 0.53 7.17 

Repeated cross-

validation 

Cost= 1 

Sigma = 0.08 

Epsilon= 0.1 

8.98 0.54 7.20 

Adoption of precision P nutrient management has the potential to be cost effective because 

farmers will greatly reduce their use of P fertilizer tremendously, especially in locations where P 

amendments are not needed. Further, variable rate technology should be environmentally friendly 

by reducing over-fertilization and surface water eutrophication. Thus, these strategies should 

improve soil health and reduce environmental concerns.  
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