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ABSTRACT  
 

Agribot is advanced mechatronic applicant machinery that serves precision agricultural 
practices and works independently with logical programs duly coded with several set of 
operational task in the field.  This is automated device that expedites accuracy and speed of 
every task of field operations associated with the farming.  The most important characteristics 
of sensors in Agribot applications are such that it must be Robust, Smart, Low-cost , with strong 
signal interpretation. The issues of Sensor Fusion, Robust algorithms and overall quick 
response to activate the mechanism are important quality parameters. The operational task like 
properties and contains sensing, paste  detection and paste management, plant properties 
sensing and climate monitoring issues are very important while designing a hardware and 
software deigning in Agribot. The weed detection in which cameras, machine vision and image 
processing like methods and tools are developed and need to be very précises and specific as 
traditional practices are challenging with an expected output such as operation cost and time 
must be saving with high quality agricultural production capacity and economic   for  Indian 
farming system. So sensors are the core components of Agribot where in the cost of the device 
can be minimised so that there will be a digital farming practices by smart farm machinery. 
The present paper introduces a overall review about sensors used in weeding, insect and disease 
detection, spraying and harvesting like operations.   
 
Keywords: Precision Agriculture, Digital Farming, Field Operation, Autonomous vehicles & 
Sensors, DOF, Machine Vision 

 
INTRODUCTION 

 
Agriculture is the most dominant sector which affects the GDP of every nation in the 

world map. To soothe hunger and bridge demand and supply gap surely there is a need for 
precision agriculture.  Hi Tech agriculture technology outstandingly transformed almost every 
field operations procedure both in crop and livestock systems in today's time. Use of these 
technologies with sensor development is a need of an hour. Due to revolution in agriculture 
robotics technology, minimum investment required in terms of time and efforts related with 
operation and production cost. Operations involved in agriculture enhanced because of, 
evolution in software development, machine vision and multivariate data processing. 
Additionally, there is improvement in equipment and machinery associated with field 
operations optimized real time scenarios faced by farmers.  In today’s time there is a dearth of 
human labours extensively required in field operations. Management of weed in intra row and 
harvesting is very tedious when it is done with traditional farm equipment and machines. As a 
consequence, labour arability crop field operations accelerated with the help of robots 
[Marinoudi et. al. (2019)]. Some of complexities associated with operation and performance of 
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advanced robotics used in the field operation. These complexities should be addressed to 
transform the applicability of robotics in agriculture. While building a perfect robotic solution 
for complex operations for the field, cost operation analysis, advantages and disadvantages 
should be given priority [Pedersen et.al. (2006)]. Other factors are also anxiously needed to 
execute any prominent task to suffice the need of requirement which includes adaption 
capacity, smartness, networking and capability of communication, less length and weight 
[Blackmore et. al. (2008)].  Smaller self-dependent autonomous machines are preferred to 
perform soil erosion and associated problems rather use of big farm machineries [Fountas et. 
al. (2010)]. Divide any big operation into small steps of operation before fully atomizing any 
task related with field operations. To cope up complex conditions involved in the field, there 
is a need to optimize all small operations [Fountas et. al. (2020)]. There are some frequently 
observed troubles commonly faced by robots while performing field operations which include 
assessment of terrain [Reina et.al. (2017), Fernandes & Garcia et.al. (2018)], plan and path 
[Bochtis et.al. (2009),Bochtis et.al. (2015),Yang & Noguchi et.al. (2012)] human observation 
- detection problem [Yang & Noguchi (2012)], and light-footed robots [Yang et al. (2004)]. 
Troubles in tasks related field operations are mainly associated with Inputs of utility and crop 
specific specifications related with their physiology, anatomy and architecture and pest - 
disease detection. To implement full autonomous application to any field operations, 
difficulties are always part and parcel. While implementing any robotic solution common 
difficulties are frequently with actuation, intelligence, navigation and vision of robotic 
systems. Some multifaceted robotics responsibilities and tasks associated with field operations 
which agribots won’t perform well includes harvesting, seeding, management of weeds, 
interaction, purning, navigation and assessment of systems [Aravind, et al. (2017)]. Some 
arable land farming operation set has been examined [R Shamshiri (2018)]. Proper attitude 
review has been a very integral part of commercially available agribots [Fountas et al. 
2020].  Examination is essential for agribots, for study of farm environment and to see exact 
technique of operation [Tsolaki et al. (2019)].  Most advanced agribots have seen for weed 
management agribot in the field which is autonomously operated for weed related operation 
[Slaughter et al., (2008)]. Similarly, straw berry related study and operation has been done by 
these agribots [Defterli (2016)]. However, holistic study of agribots architecture and operation 
is essential, because there are different types of field operations related to various types of crops 
and controlled environment. Primary challenges of agribots are associated with weather 
adaptable structures which are evolved to fulfil various needs of crops and their respective field 
operations. Weather agribots structures are accurate to cope up the challenges concerned with 
autonomy of actuation. This paper will try to give review about the traditional agriculture 
practice improvements based on sensors used in agribots.  

 
MATERIALS AND METHODS 

 
Correlational survey has been done for sensors used for weeding, insect and disease 

detection, spraying and for harvesting applications has been studied. For this review paper 
several research articles were  downloaded from renowned peer reviewed journals and then 
papers as per the sensor’s application category  divided  into four applications. While reading 
papers focus has been given to sensors and types of crops these strategies used for each 
application. Afterwards, in the (Table 1) weed detection types are presented such as chemical 
and mechanical. Additionally, crop disease and insect detection are categorized in the column 
number three of (Table 2). (Table 3) mentions about spraying mechanism two modes such as 
present and absent. At the end in (Table 4) is depicting harvesting application rate of picking 
fruit in column number three, categorized into two modes such as present or absent with their 
speed. These studies conducted while writing this research paper will be a torchbearer to shade 
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light to see how sensors revolutionized every traditional practice in conjunction with field 
operation. The role of sensors in various applications is discussed as follows. 
 
Weeding 

Amongst all field operation related tasks, wedding tasks are quite repetitive and time 
consuming in nature. More than 40% hard work required by farmers is to collect weed 
manually [Labrada et. al. (2006)]. There are certain crops that are quite disturbing to farmers 
and labours and so it took lots of money to do that manually. This kind of field operation will 
have some of the very bad effect over the health of farmers because of  manual herbicide 
sprayed over crops. As a result yield will be less because of spraying without knowing the 
difference between the crops and weed. There is a huge loss up to 61.5% in the yield of wheat 
and maize and 33.7% actual yield loss because of heavy use of pest [orke et. al.(2006)]. So to 
avoid such huge losses weeding robots is the solution [Utstumo et. al (2018)]. These weed 
robots are usually classified into two types: chemical and mechanical. These robots 100% 
efficiently and effectively can detect the weed in the crop field row and can spray the exact 
amount of herbicide required [Utstumo et. al (2018)]. Weeding robots can [Asterix. (2020)]. 
spot the weed very precisely in the range of  98% [Van Evert et. al (2006)]. Some of the 
commercial robots can spot and destroy the weed very precisely with the accuracy of 85%. 
Commercial chemical weeding robots [EcoRobotix (2020)] are less in performance compared 
with mechanical types [Klose et. al. (2008)].  

Cameras which are internet enabled are widely used. Listed cameras such as RGB and 
IR are widely used. Sensors like optical and acoustic distance sensors, laser, gyroscope and 
IMU mentioned in the literature. Sensors integrated with robotics systems can increase the 
performance of weed detection in both chemical and mechanical types. Herbicide with weed 
refers to weed extraction by chemical method which is famous than mechanical type because 
of less work done required by it. But spraying more will have some bad toxic impact over the 
health of individuals involved in these operations. So, precision spraying is the best solution 
for spraying chemicals in an accurate amount and in precise quantity over the weed. This is  
attained by integrating sensors with robots with  machine vision applications which are highly 
capable to detect weeds. In the end even though there are good solutions available in the market, 
still there is a lot to do to increase efficiency. That includes correct navigation guidance and 
simulation systems with the help of deep learning, so as to make the exact decision at the correct 
time. 

There is only one point which comes in between greater accuracy of robotic systems. 
Accurate identification of most accurate weed from field is a challenge for such system. 
Sensors and cameras integrated with robotics systems like vision cameras and sensors 
measuring distance could be a very great help for precision detection and spraying on weeds. 
There is huge scope for advancement of weed detects in their early stage like sprouting using 
soil EC sensors. 
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Table 1. Sensor-based weed detection application. 
 

Sensors Used Crops Weed Detection 
& Type 

Cited 
Work 

Cameras, optical and acoustic distance 
sensors  

Maize Yes,  Chemical Klose, et al 
(2008) 

RGB infrared camera  Carrot Partly, Chemical Utstumo, et 
al (2018) 

Webcam, solid-state gyroscope  Potato, corn Partly, Chemical Van et al 
(2006) 

Color camera  Sugar beet Yes, Mechanical Bakker,et al 
(2006) 

Color camera, artificial vision, compass  Beetroot Yes, Chemical EcoRobotix 
Color camera, Sensor Watch  Tomato Partly, Chemical Lee et al., 

(1999) 
 
Insect and Disease Detection  

Disease and Insect detection recently gained great momentum because of scope in the 
sensors based robotic machine vision system. Traditional practices took lots of time, money, 
labour and again fewer yields. If we can predict any disease of any crop early and advance 
surely that would avoid the economic burden of farmers. Monitoring with the help of these 
advanced system, insects can be detected which are usually below leaf, underground and which 
are extremely difficult to locate by human eye. In Table 2 we have categorized sensors, crops 
and then crop disease identification with accuracy would be a great help for future study.  From 
study we can see that all colour cameras like multi spectral, hyperspectral and some of digital 
cameras which are less costly also be used in some of research papers. Those are of high cost 
and would require high GPU computing power to process images and train models to give 
precise results in less time. Digital shade cameras detected viruses like wilt in pepper plants 
and mildew powdery in tomato with high accuracy. Multispectral also been given great 
accuracy for such disease detection [Fountas et. al. (2020), Scho et. al. (2017)].  In olive trees, 
Xylela fastidious detected promptly with the help of sensors [Rey et. al. (2019)].  

RGB camera sensors usually used in strawberry to detect Powdery mildew [Mahmud, 
et al (2019)]. Rice RGB camera used to detect Pyralidae insects in Tomato [Liu et al. (2019)]. 
Two DSLR cameras (one in BNDVI mode), a multispectral camera, a hyperspectral system in 
visible and NIR range, a thermal camera, LiDAR, an IMU sensor used to detect Xylella 
fastidiosa bacterium in Olive tree [ Rey et al 2019)].  The groundnut RGB camera Cotton 
(Bacterial blight, magnesium deficiency) can be used to detect (leaf spot & 
anthracnose)  groundnut in cotton  [Pilli et al (2015)]. The RGB camera, multispectral camera, 
laser sensor can be used to detect tomato spotted wilt virus & Powdery mildew virus in Bell 
pepper [ Fountas et al (2020), Schor  et al (2020)]. There are some of troubles faced while 
detecting disease and insects on different crops those include: first is lack of  image based on 
detection of models as per specified in the datasets; second is processing time from large sets 
of image datasets of multispectral, hyperspectral, thermal and RGB camera; and third is, 
uneven light conditions present in various crop fields. [Zheng, et al., (2019)] to cope with these 
real time difficulties we should use sensor vision based   modern technology [Barth et al., 
(2018)]. 
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Table 2. Sensor based disease and insect detection application. 
 

Sensor Used Crop Crop Disease Cited Work 
RGB camera, multispectral 

camera, laser sensor 
Bell 

pepper 
tomato spotted wilt virus 

& Powdery mildew 
[ Fountas et al 
(2020), Schor  
et al (2020)] 

groundnut RGB camera Cotton 
(Bacterial blight, magnesium 

deficiency), 

Cotton (leaf spot & anthracnose)  
groundnut 

 Pilli et al 
(2015) 

Two DSLR cameras (one in 
BNDVI mode), a multispectral 
camera, a hyperspectral system 

in visible and NIR range, a 
thermal camera, LiDAR, an 

IMU sensor( * ) 

Olive tree Xylella fastidiosa 
bacterium 

[ Rey et al 
2019) 

rice RGB camera Tomato Pyralidae insect Liu et al. 
(2019) 

RGB camera Strawberry Powdery mildew Mahmud,  et 
al (2019) 

 
One of the difficulties is uneven light conditions and that can be reduced using some of the 
novel imaging modalities about light to detect some of the insects and diseases on crops 
[Mahmud, et al. (2019)]. There other difficulties too apart from lightning conditions which 
are some of insect morphology related with imaging constraints such as shadow etc. For 
detection of bugs under the plant on the crop beneath the soil requires some of the advance 
mechanism to detect that precisely and that is the challenge.  

 
Spraying  

Even though we manage to control the toxic effect of active substances like herbicide 
and liquid fertilizer which we use for spraying application  over pests and insects in the field. 
There is a risk associated with the health of farmers even if we use some advanced robotic for 
applications. Precautionary measures should be taken. Spraying agri drones and agribots can 
avoid such risks. Traditional spraying accuracy has been replaced by sensor integrated machine 
vision intelligence nowadays. Using these practices with the help of drones and agriculture 
robots, we can attain precise spraying over rightly spotted part of crops in the field operations. 
So as a result of homogenous spraying, we will get proportionate yield in less time.  Research 
papers have been reviewed for sensor applications in spraying applications which are shown in 
Table 3.  Some of the processes were corrected which are used in the greenhouse in association 
with robots [Sammons et al. (2005)], robots which are working in very alignment of crop rows 
[Singh, et al (2005)]. Sensors which detect the correct spot used with robots always increase 
the accuracy of precision spraying [Oberti et al. (2013), Underwood, et al (2015)]. Nozzles are 
used with spraying devices associated with Agri drones [Sammons et al. (2005, Sogaard, & 
Lund (2007)], also that nozzles could be used with the end effector with manipulator other 
types of agribots to attain variety DOF applications ranging from 3 DOF  [Slaughter et al. 
(2008)], [Underwood, et al. (2015)] to 9 DOF [Oberti et al. (2013)]. 
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Table 3. Sensor-based spraying application. 
 

Sensors Used Crop Presence or absent of 
real time Detection 

Cited Work 

Thermal IR camera 
Hyperspectral camera, 

stereo vision, monocular 
color camera 

Vegetable crops Present Underwood, 
et al (2015) 

Robot controller Cantaloupe Absent Mahmud et al 
(2019) 

infra-red sensors , Bump 
sensors, induction sensors 

Cucumber Absent ammons et al. 
(2005) 

Ultrasonic sensor, color TV 
camera 

Grapevine Absent Ogawa,et al 
(2003) 

RGB camera, R-G-NIR 
multispectral camera 

Grapevine Present [Oberti et al 
(2013),] 

                                 
Also, in some of the applications, spraying time and machine effectiveness plays an 

important role.These suggestions should be taken in positive mode to optimize existing systems 
[Mahmud et al (2019)]. Other parameters should also be taken considerations to optimize 
existing mechanism such as machine error [Sánchez-Hermosilla et al. (2010), Singh et al. 
(2008)], parameter of performance metrics [Oberti et al (2013)], actual [Sammons et al. (2005, 
Sánchez-Hermosilla et al. (2010) Ogawa, et al. (2013)] and real time detection and spraying 
capabilities [Underwood, et al (2015)]. 
 
Harvesting  

Harvesting is one of the most repetitive field operations out of all the other applications 
mentioned in this paper. Some of the research universities and companies are taking efforts to 
automate these repetitive applications. Based on literature review found, two types of robotics 
harvesting applications which are Bulk type and second is selective type. Selective type 
application is a need of the hour which is point of attraction to everyone because of its fastest 
and precise operational results. Performance of these selective kinds of harvesting robots can 
be measured based on the objects effective picking speed and picking charge [Hayashi, et al. 
(2014)].These applications of harvesting with the help of sensor machine vision-based robotics 
should be done in precise given type without affecting crops and plant. Cash crops like 
strawberries suffer lots of manufacturing and labour cost in some stage of harvesting 
[Qingchun et al., (2012), Feng et al., (2012)]. So, to overcome that, strawberries harvesting 
robots is a solution [Hayashi et al. (2014) Hayashi et al. (2014), Xiong et al. (2019]. 
Strawberries selection speed of harvester robots is 7.5 to 8.6 seconds per strawberries and 
claimed speed is about 8 second per this fruit in line of crop [ Xiong et al (2019)], 5 second per 
fruit strawberries picking speed mentioned in [Arima, et al., (2004)]. Only speed is immature, 
what matters is accuracy of picking fruit. Traditional harvesting practices over acers of acres 
of land cost more to growers, so to avoid cost and exertion of robotics harvesting is a solution. 
Performance metrics of harvesting robots is also an important point to be considered for 
harvesting [Shiigi, et al., (2008)]. 
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Table 4. Sensor-based harvesting application. 
 

Sensors Used Crop Rate and picking 
speed  (present/ 

Absent) 

Cited Work 

CCD cameras, vacuum sensor watermelon 66.7%,  Absent Pilarski, et al. 
(2002) 

 CCD camera, photoelectric 
sensor 62.5% 

eggplant 64.1 sec/eggplant, 
Present 

Hayashi,et al 
(2002) 

 black and white CCD cameras, 
proximity sensor, far and near 

vision sensors 

melon 15 sec/fruit, Present Umeda et al 
(1999 

Pressure sensor, 2 convergent IR 
sensors, telemeter, cameras 

various fruits 2 sec/fruit (only grasp 
& detach), Absent 

[Ceres et al. 
(1998)] 

 synchronized CCD cameras cucumber 45 sec/cucumber, 
Absent 

[Van Henten, 
et al (2002)] 

Camera, laser sensor cherry tomato 8 sec/tomato bunch, 
Present 

[Feng et al. 
(2018)] 

Binocular stereo vision system, 
laser sensor 

tomato 15 sec/tomato, Present [Lili, et al., 
(2017)] 

Stereo camera, playstation 
camera 

tomato 23 sec/tomato, Present [Yaguchi et 
al (2016)] 

Color CCD cameras, reflection-
type photoelectric sensor 

strawberry 8.6 sec/fruit, Present Defterli, 
(2016) 

Sonar camera sensor, binocular 
camera 

strawberry 31.3 sec/fruit, Present Defterli, 
(2016) 

3D vision sensor with two sets 
of slit laser projectors & a TV 

camera 

asparagus 13.7 sec/asparagus, 
Absent 

Cerescon 

Laser sensor, vision 
 

mushroom sensor 6.7 
sec/mushroom, Present 

[Siciliano & 
Khatib 
(2016)] 

3D vision sensor with red, IR 
laser diodes, pressure sensor 

cherry 14 sec/fruit, Absent Tanigaki et 
al. (2008) 

High-frequency light, camera apple tree 9 sec/fruit, Present Baeten,et al 
(2008) 

Color camera, gyroscope alfalfa, sudan 2 ha/h (alfalfa), Absent Rowley 
(2009)] 

 
Some examples are dogtooth [Dogtooth], Independent harvester selection strawberry 

[Sammons et al. (2005)] end effector based [Agrobot E-Series.] and harvesting robotics 
[Octinion.]. Harvesters are used for other plants, fruits and crops such as apples and tomatoes. 
For instance, apple harvesters are very easy to pluck apples by recognizing apples by their 
color with the help of robotics vision based grippers. Fastest of such harvester has speed of 
7.5sec steps per apple [Silwal,et al., (2016)] for keeping it requires 9 sec per apple [Baeten, et 
al (2008)] such machine has 90% around accuracy in dense orchids [FR Robotics] and apple 
[Bulanon & Kataoka et. al. (2010)]. Vegetable crops such as tomato and potato, tomato 
harvester is used for plucking it for a quickest speed of around 24 seconds [Yaguchi et al. 
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(2016)], with 87% of picking price [Lili et al. (2017)]. Without moving a tomato bunch 
8seconds per tomato speed also achieved by tomato harvester [Feng et al (2018)]. Commercial 
tomato harvesters are also good such as [Metomotion.] and Root-AI [Root-AI.]. For citrus 
family fruit like oranges, citrus harvester is also used with the speed of 3 seconds per orange 
[Energid]. For cherry orchid the speed is like 14 seconds per cherry orchards [Tanigaki, et al. 
(2008)]. For manually plucking fruit requires some more time [Ceres et al. (1998)]. Cucumber 
harvester claimed speed of around 45 seconds per it with 80% accuracy [Van Henten, et al 
(2002)]. For eggplant harvester it took 64 seconds per it with accuracy of 62% [Hayashi, et al 
(2002)]. Size and weight of object has affect over accuracy and precision of plucking them. 
Harvester of commercial plucking of pumpkin and cabbage [Edan, et al. (2002)] is also used 
and robotic system is also designed. For melon and watermelon, melon robotic harvester has 
around 86 % accuracy [Umeda et al (1999)], with 67% of selection rate [Pilarski, et al. (2002)]. 
Harvester machine, designed for Sorghum showed 2 hector acer fastest speed of harvesting it 
[Rowley et. al. (2009)]. Mushroom harvester shown 70% accuracy [Siciliano, & Khatib (2016)] 
damages were avoided and cost loss was made up with the help of these robotics applications. 

In summary, Harvester robots are of two types one which is mounted on tractor used 
for apple [Baeten, et al. (2008)] and other type is strawberries manual harvester [Xiong et al., 
(2019)] and remaining type is independent one. Two types of picking structures such as suction 
vacuum type and other is gripping gripper type. Gripper type is with a casual joints and links 
used to pluck item by the force enabled mechanism of end effector with manipulator [Abundant 
Robotics]. Whereas suction vacuum type can able to pull and twist and then pluck the item. 
The gripper’s arms is one of the advance structure helpful for plucking fruit in harvesting 
application [Agrobot E-Series], peduncle type arms [Hayashi et al. (2014)] and fruit is plucked 
off with  gripper or vacuum suction [Yaguchi et al. (2016), Zapotezny & Lehnert (2019), 
Agrobot E-Series.]. For localization of fruit is very important in machine vision using sensors 
such as RGB cameras, time of flight sensors, infrared sensors [Xiong et al. (2019), Agrobot E-
Series.] or laser sensors [Feng, et al. (2018)] and other robots uses [Cerescon] Proximity 
sensors instead of cameras. Manipulators were commonly used in harvesting applications 
which has degree of freedom movements ranging from  2 DOF to 7 DOF. 
 

CONCLUSIONS 
 
Sensors and cameras integrated with robotics systems like vision cameras would be 

very great help for precision detection and spraying on weeds. There is huge scope for 
advancement of weed detects in their early stage like sprouting using soil EC sensors. There 
other difficulties too apart from lightning imaging constraints such as shadow etc. some of the 
advance mechanism to detect bugs under the plant on the crop beneath the soil requires that 
precisely and that is the challenge. Some of the applications, spraying time and machine 
effectiveness play an important role and that suggestions should be taken in positive mode to 
optimize existing systems.  Other parameters should also be taken into like machine error 
parameter of performance metrics actual and real time detection and spraying capabilities.  
Manipulators were commonly used in harvesting applications which works in degree of 
freedom between 2 DOF to 7 DOF. From this paper we can say  that sensors useful in agribots 
applications on Weed Detection, Spraying, Disease and Insect Detection and harvesting. Out 
of these four applications harvesting application has much more ahead in sensor development 
associated with vision-based agriculture robots. Whereas less sensors used in the rest of 
applications. Specifically, for weed detection application we found there is huge scope for full 
autonomous sensor-based weed detection and for its effective efficiency. However, weed 
control done by mechanical type than chemical one. Even though for insect and disease 
detection application has good result accuracy but the work done on limited crop is very less. 
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Image processing should be immediately linked with processing strategies, communication 
way, vision structures and the extent of the photographs. A key task related to the robotic 
imaginative and prescient structures is to offer uniform lighting situations via synthetic 
illumination methods. In future we need to increase decision support system of these 
applications and there is need of new algorithm development in relation with sensor based 
robotic system. 
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