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ABSTRACT 
 

Estimating crop yield prior to harvest using remote sensing techniques has proven to be 
successful. However, accuracy of estimation still varies across crops and landscapes. This study 
was conducted to examine the applicability of Sentinel-2B for estimating sorghum yield during 
the 2018 rainy season in three locations (Bebeji, Dawakin Kudu and Rano) within the Sudan 
Savannah agro-ecological zone of Nigeria. SAMSORG 45 (an early maturing improved 
sorghum variety) was established in five (5) randomly selected farmer plots in each of the three 
LGAs. The relationship among different vegetation indices, Normalized Difference Vegetation 
Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Ratio Vegetation 
Index (RVI) and grain yield were determined using linear regression analysis. Models at 
different growth stages were then compared using root mean square error (RMSE), coefficient 
of variations (CV) and coefficient of determination (R2) respectively. The results from the 
statistical analysis showed that NDVI was superior to GNDVI and RVI for grain yield 
estimation, indicating low RMSE, high R2 and low CV values at early vegetative (40 days after 
sowing, DAS), reproductive stage, and entire crop-life cycle. The estimate at 40DAS, 
reproductive stage, and entire crop-life cycle showed RMSE of 0.04, 0.03, 0.02, R2 (0.75, 0.77 
0.93), CV (13.7%, 27.3%, 39.2%) respectively. In addition, RVI had the best fit for stalk yield 
estimates, having RMSE (0.06, 0.04, 0.01), R2 (0.5, 0.83, 0.98) and CV (15.7%, 19.9% 38.5%) 
at 70DAS, reproductive stage, and entire crop-life cycle respectively. This study therefore 
concludes that sorghum yield could be accurately predicted in-season with NDVI and RVI for 
grain and stalk yields using Sentinel-2B. 
 
Keywords: Sorghum, Normalized Difference Vegetation Index (NDVI), green Normalized 
Difference Vegetation Index (GNDVI), Ratio Vegetation Index (RVI), in-season yield 
estimate, Sudan Savanna 

 
INTRODUCTION 

 
Sorghum [Sorghum bicolor (L.) Moench] is the most important cereal in the Guinea 

(800–1100 mm rainfall) to Sudan savanna (600–800 mm) zones of West Africa (Akinseye et 
al. 2020) and in the drier Sahel (300-600mm) environments. Its productivity has an important 
influence on food security, contributing directly to household food availability and as well as 
influencing incomes due to its industrial demand (Ajeigbe et al. 2017). The recent advances in 
sensors technology and availability of free high-resolution (spatial and temporal) multispectral 
satellite images afford an opportunity to predict crop yields as well as mapping the spatial 
distribution in near real-time (Chivasa et al. 2017). In particular, crop yield estimation may 
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play a fundamental role in supporting policy formulation and decision-making in agriculture 
(e.g. management of food shortage) especially in the Savanna region of West Africa that is 
characterized by high climate variability and food price volatility. Among the possible 
approaches that may be adopted for yield estimation at large spatial scales include the 
integration of crop simulation model (Akinseye et al. 2020) and satellite data that seems to be 
one of the most appropriate quantitative analysis methodologies (Moriondo et al. 2007). Yield 
estimation plays an important role in stabilizing prices and can have a direct influence in 
marketing and logistical issues and determination of pricing policies of food (Lobell et al. 
2003).  

In Nigeria, crop surveys, seed purchase records, land area under cultivation, field visits 
from extension officers, visual assessment of the crop, etc., are mostly used in estimating yield. 
These methods are either costly, time consuming, not accurately representing the overall 
production picture or prone to large errors due to incomplete ground observations, leading to 
poor crop yield estimation and often not available in good time for early warning purposes. As 
such, there is the need to develop faster models for early crop yield estimation that can 
contribute to minimizing yield gap (Printer et al. 2003). Satellite data has a wide range of 
applications in the field of agriculture, which include yield estimation (Claverie et al. 2012). 
In this study, we examine the suitability and applicability of Sentinel-2B for estimating 
sorghum yield using vegetation indices such as Normalized Difference Vegetation Index 
(NDVI), Green Normalized Difference Vegetation Index (GNDVI) and Ratio Vegetation Index 
(RVI). 

 
MATERIALS AND METHODS 

 
The study was carried out during the 2018 cropping season in three selected sites within 

the Sudan Savanna ecological zone of Nigeria: Bebeji (11.537°N 8.31°E), Dawakin Kudu 
(11.797°N 8.706°E) and Rano (11.485°N 8.514°E) Local Government Areas of Kano State.. 
The long-term daily rainfall (1981–2016) for all sites was obtained to establish comparison 
with the cropping year (2018). The record showed that 2018 total rainfall from May- October 
(852mm at Bebeji, 757 mm at Dawakin-kudu and 748 mm at Bunkure) was higher in Bebeji 
and a little below for Dawakin- kudu and Bunkure compared to seasonal (1980 -2015) average 
of 784 mm for Kano as the reference site. The analysis of monthly rainfall of both stations 
indicate a distinct mono-modal pattern with the peak amount in August and varied between 
May and October.  Over 50% of the total rainfall was received in the month of July and August, 
while both minimum and maximum temperatures decrease uniformly throughout the growing 
season. Furthermore, the Sentinel-2B, level-1C time series images for the year 2018 were 
sourced and downloaded from Copernicus Open Access Hub (COAH) using the link 
(https://scihub.copernicus.eu/dhus/#/home). The images used were captured between 25 May 
and 11 November, 2018 at 10-day interval. The variety of Sorghum used was SAMSORG 45, 
which is an improved early maturing variety that reaches 50% flowering in 67 days after 
sowing (DAS) and has a yield potential of 2.4 to 2.8 tons ha-1.  Sen2Cor version 2.4 processor 
was used to generate Level 2A (Bottom-of-atmosphere), while Sentinel application platform 
SNAP version 5.0 was used to obtain NDVI, GNDVI and RVI values derived for the sorghum 
plants. The vegetation indices tested were calculated using the formulae presented in Table 1. 
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Table 1. Vegetation Indices (VIs), their mathematical formulae, the scale of development and 
parameters estimated (Cammarano et al. 2011). 
 

Index  Formula     Scale   Parameter  
NDVI (Normalized 
Difference Vegetation 
Index)  

(NIR-Red)/(NIR+Red)   
Canopy             Biomass; Vegetation Fraction  

GNDVI (Green 
Normalized Difference 
Vegetation Index)  

(NIR-
Green)/(NIR+Green) 

  
Canopy               Chlorophyll; Vegetation Fraction  

RVI (Ratio Vegetation 
Index)   NIR/Red      Leaf                                       Biomass  

 
In-season estimated yield (INSEY) was determined using the equation described by 

Teal et al. (2006): 
INSEY= VI / CGDD 

 
where VI is the vegetation index and CGDD is the cumulative growing degree days from the 
beginning of the season to the day of sensing. 
Growing degree days (GDD) were calculated using the equation:  
 

GDD = (Tmax + Tmin) / 2) - Tb 
 

where Tmax - maximum daily temperature, Tmin - minimum daily temperature and Tb -base 
temperature.  

In addition, regression analysis was used in determining the relationship between VIs as 
independent variables and final grain yield as a dependent variable. Finally, coefficient of 
determination (R2), adjusted R2, root mean square error (RMSE) and the variability of the 
vegetation index measurements expressed as coefficient of variation (CV) in percentage (%) 
were used as the criteria in selecting the best fit model. 
 

RESULTS AND DISCUSSION 
 

Table 2 shows the multiple regression analysis for the entire crop cycle using INSEY 
values generated for both grain and stalk yield. The estimates of VIs (NDVI, GNDVI and RVI) 
for grain and stalk yield varied due to the parameters the VIs measures on the crop. Among the 
three VIs for grain yield, NDVI indicates the lowest RMSE of 0.019, highest R2 value of 0.93 
and strong R value of 0.96, and CV estimate was 39.2% respectively. Meanwhile for stalk 
yield, the INSEY estimated revealed that RVI had the lowest RMSE (0.011), highest R2 value 
of 0.98 and CV value of 38.5%.  The analysis for the entire crop cycle showed that NDVI had 
the best model fit for grain yield with 93% coefficient of determination, while RVI was found 
to have the best model fit for stalk yield, estimated 98% accuracy.  
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Table 2.  Multiple regression models for estimating sorghum grain and stalk yields for the 
entire crop’s life cycle. 
 

Yield VI CV RMSE R2 Multiple R 

Grain Yield 
NDVI 39.23 0.019 0.93 0.96 

GNDVI 51.59 0.024 0.89 0.94 
RVI 38.49 0.026 0.87 0.93 

Stalk Yield 
NDVI 39.23 0.025 0.92 0.96 

GNDVI 51.59 0.034 0.84 0.92 
RVI 38.49 0.011 0.98 0.99 

VI= Vegetation Index, CV= coefficient of variation (%), RMSE= Root Mean Square Error and 
R2= Coefficient of determination 
 
The results agreed with similar findings reported by Morel et al. (2014) that found NDVI has 
most appropriate estimative measure to crop productivity during entire growing season for 
wheat crop.  

However, Table 3 reveals the estimates of sorghum grain yield at different stages, and 
the results showed vegetative stage as most suitable model fit for grain yield estimates 
compared to reproductive and grain filling and physiological maturity stages.  NDVI had the 
lowest RMSE and CV value of 0.03 and 27.3%, highest R2 of 0.77 and multiple R value of 
0.88 respectively. The vegetative stage suggests as the critical growing point differentiation 
(GPD) of any crop indicating as best fit with 77% yield prediction accuracy. At this stage, the 
plant is entering into a phase of rapid nutrients and water uptake, and has little tolerance to 
stress. This can significantly affect the grain yield. This result agreed with findings by Shambel 
et al. (2017) who reported that grain yield prediction in sorghum using spectral measurements 
should be carried out at a stage of critical nutrient demand. 

 
Table 3.  Multiple regression models for estimating sorghum grain yield at different stages of 
the crop’s development. 
 

STAGE VI CV RMSE R2 Multiple R 

Vegetative 
NDVI 27.26 0.03 0.77 0.88 

GNDVI 33.36 0.04 0.76 0.87 
RVI 27.66 0.04 0.63 0.80 

Reproductive 
NDVI 16.89 0.04 0.74 0.86 

GNDVI 23.57 0.05 0.50 0.70 
RVI 19.91 0.04 0.74 0.86 

Grain Filling and Physiological Maturity 
NDVI 23.36 0.06 0.40 0.63 

GNDVI 24.12 0.06 0.35 0.59 
RVI 33.30 0.06 0.26 0.51 

VI= Vegetation Index, CV= coefficient of variation (%), RMSE= Root Mean Square Error and 
R2= Coefficient of determination 
 

CONCLUSIONS 
 

This study concludes that sorghum yield could be accurately predicted in-season with 
NDVI and RVI for grain and stalk yields using Sentinel-2B. 
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