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ABSTRACT 
 

In order to assess the possibilities to transfer crop property prediction models generated 
from data collected with drone-mounted multispectral cameras to satellite image-based 
decision support systems, data from two multispectral drone cameras – a five-band camera 
(Micasense Rededge, AgEagle, USA), and a nine-band camera (MAIA, Eoptis, Italy) mounted 
on the same drone – were compared with surface reflectance data from the Sentinel-2 satellites. 
Data were collected in cereal crops in south Sweden during 2020-2022 at 30 different locations 
and dates. The time difference between the Sentinel-2 images and the corresponding drone 
flights was maximum two days. Comparisons were made both for individual bands and for a 
range of vegetation indices (VIs). Results calculated as average reflectance for each flight and 
location showed that individual bands of the drone cameras were often well correlated with the 
Sentinel-2 bands, but with an offset from the 1:1 line (as indicated by low Nash-Sutcliffe 
modeling efficiency E). For many VIs, the bias was much lower (e.g., for NDVI, R2 was 0.90 
and 0.96, and E was 0.69 and 0.93, for MAIA and Micasense Rededge respectively). Hence, 
models based on these drone sensors may be possible to apply on satellite image data but may 
require some adjustments to correct for systematic differences, depending on bands or indices 
used. 
 

INTRODUCTION 
 

Drones (unmanned aerial vehicles, UAVs) equipped with multispectral cameras can 
efficiently collect detailed crop canopy reflectance data in small-plot field trails (e.g., Prey and 
Schmidthalder, 2019), thereby reducing costs for manual field work. Additionally, this 
provides possibilities for the development of crop status prediction models based on spectral 
data, that may be of relevance in practical precision agriculture, e.g., for optimising nitrogen 
(N) input (Piikki et al., 2022) or protein concentration (Wolters et al., 2022). To make such 
models widely available, one option is to apply them in decision support systems (DSS) based 
on satellite images data (such as CropSAT.com (Dataväxt, Sweden); Söderström et al., 2017). 
If such a transfer of models should be successful, there must be a consistent and established 
relationship between crop reflectance registered by the drone camera and the satellite sensor. 
In earlier research, comparisons between data from drone sensors and Sentinel-2 data (e.g., 
Bukowiecki et al., 2021; Matese et al., 2015; Rasmussen et al. 2020) have shown variable 
results, partly depending on different strategies in the data collection, and how data was 
compared. 

In this study the aim was to compare reflectance data (both individual bands and a 
selection of vegetation indices (VIs)) from two drone sensors with Sentinel-2 satellite data. 
Data was collected over a period of three years in different locations south Sweden, and the 
difference in time between drone and satellite acquisition was not more than two days. Based 
on this criterion, we tried to establish consistent sensor relationships. Ultimately, we assess 
whether transfer of prediction models developed by the drone sensor data to satellite images 
used in agricultural DSSs is possible. 
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MATERIALS AND METHODS 

 
Two drone cameras were used: a nine-band sensor (MAIA, Eoptis, Italy), and a five-

band sensor (Micasense Rededge-3, AgEagle, USA). Both were mounted on the same drone 
(a custom-made octocopter (Explorian 8, Pitchup, Sweden). The bands of these cameras cover 
the visible to near infrared (NIR) portion of the electromagnetic spectrum, bandwidths are 
shown in Fig. 1. Sentinel-2 has bands with the same specification as those of MAIA. Drone 
flights were carried out over small areas (1-4 ha in size) which included small-plot field trials 
in wheat, oats, and barley, with at least 80% image overlap, at 80-m height above ground, and 
with a speed of 5 m s-1. Further details of flights and data processing are found in e.g. Piikki et 
al. (2022). Orthomosaics were generated with the Solvi.ag web application (Solvi, Sweden). 
Two methods were used for calculation reflectance for the drone sensors. For MAIA, 50 cm × 
50 cm target panels (MosaicMill, Finland) with different reflectance characteristics were 
placed in the field. These were used to recalculate digital numbers in the orthomosaic to 
reflectance. For Micasense Rededge, a provided small target panel was photographed before 
and after the flight and used for deriving reflectance. 
 

 
 
Fig. 1. Example spectral signatures of wheat in the spectral region 400-900 nm (visible to near 
infrared). Different curves represent data from after flowering in trial plots with different N 
rates applied. Shaded areas show the bands of different sensors (UAV: MAIA and Micasense 
Rededge; Satellite: Sentinel-2). 
 

To georeference the drone mosaics, we used a national orthomosaic based on aerial 
photography provided by the Swedish Land Survey (Lantmäteriet, Sweden), which had a 
reported positional error of less than 20 cm. Only flights done within two days from an 
available Sentinel-2 image free from haze, clouds, and cloud shadows (as judged manually) 
were used. Thirty-two flights carried out over wheat, barley, and oats during the period 2020-
2022 from start of the stem elongation period to end of flowering fulfilled these criteria. 



2nd African Conference on Precision Agriculture | 7-9 December | 2022 
 

 201 

Sentinel-2 L2A processed images (atmospherically corrected orthomosaics with ground 
reflectance) downloaded from European Space Agency’s web site 
(https://scihub.copernicus.eu) were used. These were not further georeferenced but used as 
provided. 

In this study, data extracted from the trial parcels (which was the initial aim of the 
projects within which the drone flights were carried out) were not used. Instead, average 
reflectance data for each band across all 20 m × 20 m areas coinciding with pixels of the 
Sentinel-2 satellite were calculated. Calculations were made for all individual bands (Fig. 1) 
and the VIs: NDVI (Rouse et al., 1973); MSAVI2 (Qi et al., 1994); NDRE (Barnes et al., 2000); 
NGRDI (Bannari et al., 1995); ChlI (Gitelson et al., 2003); and TGI (Hunt et al., 2013). In two 
cases, there were problems with the calculations of reflectance for the visible bands of the 
MAIA camera. These two flights were omitted. To derive general sensor-sensor relationships, 
and reducing impact of differences in e.g., georeferencing, averages of reflectance in bands 
and VIs for each flight was used in the analyses. Comparisons were analysed statistically with 
the determination coefficient R2 of a linear regression line between reflectance data from the 
two sensors, as well as the modeling efficiency E (Nash and Sutcliffe, 1970; how well the data 
follows the 1:1-line). In a perfect relationship both R2 and E are approaching 1.0. If the data 
are well correlated, but not close to the 1:1-line, the R2 is high but E is low and can even be 
negative if the bias is large.  
 

RESULTS AND DISCUSSION 
 

Results from the analyses are shown in Table 1. Individual bands are often well correlated 
(relatively high R2), notably the Micasense Rededge bands 1-4 and MAIA bands 2, 4 and 5 
with an R2 > 0.70, but in some cases, there is a bias, resulting in a low or negative E. Among 
the individual bands, only MAIA band 5 and Micasense Rededge bands 1 and 3 had an E > 
0.50. For some of the tested VI’s, this bias was removed, and both E and R2 were high, e.g. the 
Micasense Rededge indices NDVI and NGRDI, and for MAIA, the indices MSAVI2, NDRE 
and ChlI. The index TGI (based on the visible bands) was only well correlated to the Micasense 
Rededge sensor (still with a very large bias). 

The results indicate that for some of the best performing VIs, it should be possible to a 
apply a prediction model from drone sensor data that is based on one or more of these indices 
on Sentinel-2 satellite images, directly or with some linear adjustment. Especially simple 
indices based on ratios and quotients between two bands seem to be well correlated between 
the sensors and producing very similar values. The more complex TGI index did not work 
equally well. 

When data from individual flights (the 20 m × 20 m pixels, on average 40 pixels per 
flight; n=1188 in total) were analysed (data not shown here), it is evident that the relationships 
vary between flights. The reasons for this can be many. With this type of dataset, which consists 
of orthomosaics of agricultural fields, but each of which includes small-plot field trials with 
small areas with considerable variation in reflectance, including areas of bare ground, it is 
likely that also minor variation in the position of the Sentinel-2 images will have a large impact 
on the relationship with data from the drone flight. The drone orthomosaics are very accurately 
positioned, whereas it is difficult to be sure of the correct position of the satellite image. Some 
other issues may be related to the radiometric corrections, both for the Sentinel-2 images and 
certainly for the drone images. In this case, drone flights were done in as uniform weather as 
possible, but still light conditions may fluctuate during a flight. Incoming light sensors were 
used on the drone, which can correct for this to some extent. In addition, flights were carried 
out with slightly varying solar altitude. On average it was 48° but ranging between 31° and 
54°. Such varying conditions may impact on the results (e.g., de Souza et al., 2021). Still, the 
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high R2 and E for some indices on average, suggest that the procedures used generate useful 
drone sensor data. To minimize variation between flights, it is recommended to carefully 
follow a predetermined protocol in terms of flight height, speed, and image overlap, avoid data 
collection in varying weather conditions, and also use the same method for geometric and 
radiometric corrections (see further discussion in e.g., Maes and Steppe, 2019). 

 
Table 1. Modeling efficiency (E) and coefficient of determination (R2) between data 
(individual bands, see Fig. 1, and selected indices) from Sentinel-2 and two drone cameras. 
The table shows averages from 30 flights (2020-2022; date between drone flight and satellite 
image is max 2 days). 

 MAIA  Micasense Rededge 
Band or 
index 

Band(s) 
used E R2 

 Band(s) 
used E R2 

Blue 2 
-

0.09 0.70 
 

1 0.56 0.83 

Green 3 
-

0.09 0.40 
 

2 -0.36 0.86 
Red 4 0.49 0.87  3 0.63 0.93 
RE1 5 0.84 0.86  4 -2.09 0.88 
RE2 6 0.39 0.59  - - - 
NIR1 7 0.22 0.48  - - - 

NIR2 8 
-

0.01 0.43 
 

5 -2.68 0.40 

NIR3 8a 
-

0.09 0.46 
 

- - - 
MSAVI2 4, 8 0.79 0.83  3, 5 -0.32 0.81 
NDVI 4, 8 0.69 0.90  3, 5 0.93 0.96 
NDRE 5, 8 0.83 0.90  4, 5 0.49 0.95 
NGRDI 3, 8 0.29 0.55  2, 5 0.88 0.93 
ChlI 6, 7 0.85 0.90  - - - 

TGI 2, 3, 4 1.34 0.12 
 

1, 2, 3 
-

10.15 0.78 
 

CONCLUSIONS 
 

As judged by the comparisons with the L2A calibrated Sentinel-2 satellite images, both 
drone cameras used in this study seemed to produce rather consistent orthomosaics. This was 
achieved with drone data collected over several seasons, during varying conditions and 
locations. In this study, average reflectance from different bands and indices were computed 
from this range of flights and was used in the comparisons. Individual bands were in most cases 
well correlated between drone sensor orthomosaics and satellite images, but with a bias. Simple 
indices of the normalized difference type (NDVI, NDRE etc.) showed smaller biases, and in 
some cases the computed index values were very similar from the different platforms. This 
indicates that models of various crop properties calculated based on drone data collected in 
field trials, may well be transferred to Sentinel-2 image based DSSs, possibly with some 
correction factor depending on the indices included in the model. 
  



2nd African Conference on Precision Agriculture | 7-9 December | 2022 
 

 203 

REFERENCES 
 
Bannari, A., Morin, D., Bonn, F. Huete, A.R., 1995. A review of vegetation indices. Rem. 

Sens. Rev. 13:95-120 
Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., et al., 2000. Coincident detection of 

crop water stress, nitrogen status and canopy density using ground based multispectral 
data. In Proc. 5th ICPA: Bloomington, MN, USA. 

Bukowiecki, J., Rose, T., Kage, H., 2021. Sentinel-2 Data for Precision Agriculture? –A UAV-
Based Assessment. Sensors, 21:2861.  

de Souza, R., Buchhart, C., Heil, K., Plass, J., et al., 2021. Effect of Time of Day and Sky 
Conditions on Different Vegetation Indices Calculated from Active and Passive Sensors 
and Images Taken from UAV. Rem. Sens. 13:1691.  

Gitelson, A.A., Gritz, Y., Merzlyak, M.N., 2003. Relationships between leaf chlorophyll 
content and spectral reflectance and algorithms for non-destructive chlorophyll 
assessment in higher plant leaves. J. Plant Physiol. 160:271-282.  

Hunt Jr, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S., et al., 2013. A visible band 
index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth 
Obs. and Geoinfo. 21:103-112. 

Maes, W.H., Steppe, K., 2019. Perspectives for remote sensing with unmanned aerial vehicles 
in precision agriculture. Trends Plant Sci. 24:152–164. 

Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., et al., 2015. Intercomparison of UAV, 
Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Rem. Sens. 
7:2971-2990. 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A 
discussion of principles. J. Hydrol. 10:282–290. 

Piikki, K., Söderström, M., Stadig, H., 2022. Remote sensing and on-farm experiments for 
determining in-season nitrogen rates in winter wheat – Options for implementation, 
model accuracy and remaining challenges. Field Crops Res. 289:108742. 

Prey, L., Schmidhalter, U., 2019. Temporal and spectral optimization of vegetation indices for 
estimating grain nitrogen uptake and late-seasonal nitrogen traits in wheat. Sensors 
19:4640. 

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., et al., 1994. A modified soil adjusted vegetation 
index. Rem. Sens Environ. 48:119-126.  

Rasmussen, J., Azim. S., Kjærgaard Boldsen, S., Nitschke, T., et al., 2020. The challenge of 
reproducing remote sensing data from satellites and unmanned aerial vehicles (UAVs) 
in the context of management zones and precision agriculture. Prec. Agric. 22:834-851. 

Rouse Jr, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring the vernal 
advancement and retrogradation (green wave effect) of natural vegetation (No. NASA-
CR-132982). Available at: 
https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf 

Söderström, M., Piikki, K., Stenberg, M, Stadig, H., et al., 2017. Predicting nitrogen uptake in 
winter wheat by combining proximal crop measurements with Sentinel-2 and DMC 
satellite images in a decision support system for farmers. ACTA Agric. Scand. Sect. B, 
Soil and Plant Sci., 67, 637–650. 

Wolters, S., Söderström, M., Piikki, K., Börjesson, T., et al., 2022. Predicting grain protein 
concentration in winter wheat (Triticum aestivum L.) based on unpiloted aerial vehicle 
multispectral optical remote sensing. ACTA Agric. Scand. Sect. B, Soil Plant Sci., 
72:788–802. 




