Download the Conference Proceedings

 
Get your copy of the 2024 African Conference on Precision Agriculture Proceedings today! Download the PDF file and view all of the available proceedings.
AfPCA Proceedings 2024

Proceedings

Find matching any: Reset
Sogbedji, J.M
Mahmoud, A.G
Belal, A.A
IKEBE, M
Add filter to result:
Authors
MORIMOTO, E
LEE, J
NONAMI, K
MATUMURA, I
IKEBE, M
SATO, S
Amouzouvi, K.M
Ozou, K.E
Kolani, L
Amouzouvi, K.A
Sogbedji, J.M
Amin, M.E
Abdelfattah, M.A
Mohamed, E.S
Belal, A.A
Nabil, M
Mahmoud, A.G
Topics
Precision Agriculture for Field and Plantation Crops
Precision Planting/Harvesting
Type
Oral
Poster
Year
2020
2022
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Development of Canopy Mapping System of Asian pears (Pyrus pyrifolia Naka) Using Terrestrial Laser Scanning

In this paper, the canopy mapping system (CMS) of Asian pears for estimating yield during Bud thinning and Pruning operations using point cloud data was proposed. Bud thinning and Pruning in Asian pear (Pyrus pyrifolia Naka) is necessary to ensure quality and yield but is time-consuming and heavily depends on work knowledge. This study described a method of estimating the number of fruits through the length of a branch based on remote sensing. The CMS would be useful to support more efficient... E. Morimoto, J. Lee, K. Nonami, I. Matumura, M. Ikebe, S. Sato

2. Performance agronomique et économique de différentes stratégies de gestion de la fertilité du sol sous culture de soja (Glycine max L. Merril) dans la zone littorale du Togo.

Ce travail a pour objectif de valoriser les émondes de deux légumineuses arbustives et quelques fertilisants organiques pour améliorer la production du soja. Afin de parvenir à cet objectif, les paramètres comme la masse de mille graines, les rendements en gousses, en graines, en fanes du soja et autres ont été déterminés. L’étude a eu lieu à la Station d’Expérimentation Agronomique de Lomé (SEAL)... K.M. Amouzouvi, K.E. Ozou, L. Kolani, K.A. Amouzouvi, J.M. Sogbedji

3. Potato Yield Prediction Using Multi-temporal Sentinel-2 Data and Multiple Linear Regression

Traditional potato growth models have a number of flaws, i.e., the cost of data collection, quality of input data, and the absence of spatial information in some cases. To address these challenges, we created a multiple linear regression model (MLRM) that uses the multi-temporal Sentinel-2 derived indices to predict potato yield. Along the growing season (from October 2019 to February 2020) eight Sentinel-2 imageries were collected, afterwards, the normalized difference vegetation index (NDVI)... M.E. Amin, M.A. Abdelfattah, E.S. Mohamed, A.A. Belal, M. Nabil, A.G. Mahmoud